Corn cob is a naturally renewable material with developed micropore and hydrophobic characteristics, which enables it to show good oil adsorption capacity. In order to improve oil adsorption capacity, corn cob was mod...Corn cob is a naturally renewable material with developed micropore and hydrophobic characteristics, which enables it to show good oil adsorption capacity. In order to improve oil adsorption capacity, corn cob was modified with lauric acid and ethanediol. The structure of raw and modified corn cob was investigated using Fourier transform infrared(FTIR) spectroscopy, scanning electron microscopy(SEM), Brunauer-Emmett-Teller(BET) method, thermogravimetric analysis(TGA) and Ze Ta potential analyzer. The effects of p H level, adsorption time, adsorbent dosage, and initial oil concentration on oil absorbency of corn cob were studied. The results indicate that the modification significantly improved the lipophilicity of corn cob, making the modified corn cob with much better adsorption capacity on oil absorbency. Compared with raw corn cob, the maximum saturated adsorption capacity of modified corn cob is 16.52 mg/g at p H 5, and the increasing percentage is found to be 141%, which indicates that the modification causes a better adsorption capacity for oil removal. In addition, due to high oil adsorption capacity, affordable price and low secondary pollution, the modified corn cob could be considered promising alternative for the traditional oil adsorbent to clean up the emulsified oily water.展开更多
s: Ultrafine A2La2Ti3O10 (A=K, Na) powders with laminar structure were successfully synthesized by citric acid sol-gel method using ANO3(A=K, Na)?La(NO3)3?Ti(OBu)4 and citric acid as starting precursors. The crystalli...s: Ultrafine A2La2Ti3O10 (A=K, Na) powders with laminar structure were successfully synthesized by citric acid sol-gel method using ANO3(A=K, Na)?La(NO3)3?Ti(OBu)4 and citric acid as starting precursors. The crystalline phase of A2La2Ti3O10 can be obtained by thermal decomposition of citrate complex precursors at a relatively low temperature of 800 ℃ (600 ℃ for A=Na), about 300 ℃(500 ℃ for A=Na) lower than that of conventional solid state reaction process. The properties of the citrate precursors and the calcined powders were characterized by Infrared spectroscopy (IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal-gravimetric-differential thermal analysis (TG-DTA), inductively coupled plasma (ICP) and Brunauer-Emmett-Teller (BET) techniques. Results show that the average size of A2La2Ti3O10 powders obtained by citric acid sol-gel route was reduced to 200 nm×250 nm and the specific surface area was up to 19 m2·g-1. At the same time, the product was with more regular morphological characteristics. The synthesis process and the formation of A2La2Ti3O10 were also discussed. The obtained A2La2Ti3O10 was found to be transformed from A2La2Ti3O9.5 during the formation process.展开更多
基金Project(51174017)supported by the National Natural Science Foundation of China
文摘Corn cob is a naturally renewable material with developed micropore and hydrophobic characteristics, which enables it to show good oil adsorption capacity. In order to improve oil adsorption capacity, corn cob was modified with lauric acid and ethanediol. The structure of raw and modified corn cob was investigated using Fourier transform infrared(FTIR) spectroscopy, scanning electron microscopy(SEM), Brunauer-Emmett-Teller(BET) method, thermogravimetric analysis(TGA) and Ze Ta potential analyzer. The effects of p H level, adsorption time, adsorbent dosage, and initial oil concentration on oil absorbency of corn cob were studied. The results indicate that the modification significantly improved the lipophilicity of corn cob, making the modified corn cob with much better adsorption capacity on oil absorbency. Compared with raw corn cob, the maximum saturated adsorption capacity of modified corn cob is 16.52 mg/g at p H 5, and the increasing percentage is found to be 141%, which indicates that the modification causes a better adsorption capacity for oil removal. In addition, due to high oil adsorption capacity, affordable price and low secondary pollution, the modified corn cob could be considered promising alternative for the traditional oil adsorbent to clean up the emulsified oily water.
文摘s: Ultrafine A2La2Ti3O10 (A=K, Na) powders with laminar structure were successfully synthesized by citric acid sol-gel method using ANO3(A=K, Na)?La(NO3)3?Ti(OBu)4 and citric acid as starting precursors. The crystalline phase of A2La2Ti3O10 can be obtained by thermal decomposition of citrate complex precursors at a relatively low temperature of 800 ℃ (600 ℃ for A=Na), about 300 ℃(500 ℃ for A=Na) lower than that of conventional solid state reaction process. The properties of the citrate precursors and the calcined powders were characterized by Infrared spectroscopy (IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal-gravimetric-differential thermal analysis (TG-DTA), inductively coupled plasma (ICP) and Brunauer-Emmett-Teller (BET) techniques. Results show that the average size of A2La2Ti3O10 powders obtained by citric acid sol-gel route was reduced to 200 nm×250 nm and the specific surface area was up to 19 m2·g-1. At the same time, the product was with more regular morphological characteristics. The synthesis process and the formation of A2La2Ti3O10 were also discussed. The obtained A2La2Ti3O10 was found to be transformed from A2La2Ti3O9.5 during the formation process.