The fuzzy goal flexible job-shop scheduling problem (FGFJSP) is the extension of FJSP. Compared with the convention JSP, it can solve the fuzzy goal problem and meet suit requirements of the key job. The multi-objec...The fuzzy goal flexible job-shop scheduling problem (FGFJSP) is the extension of FJSP. Compared with the convention JSP, it can solve the fuzzy goal problem and meet suit requirements of the key job. The multi-object problem, such as the fuzzy cost, the fuzzy due-date, and the fuzzy makespan, etc, can be solved by FGFJSP. To optimize FGFJSP, an individual optimization and colony diversity genetic algorithm (IOCDGA) is presented to accelerate the convergence speed and to avoid the earliness. In IOCDGA, the colony average distance and the colony entropy are defined after the definition of the encoding model. The colony diversity is expressed by the colony average distance and the colony entropy. The crossover probability and the mutation probability are controlled by the colony diversity. The evolution emphasizes that sigle individual or a few individuals evolve into the best in IOCDGA, but not the all in classical GA. Computational results show that the algorithm is applicable and the number of iterations is less.展开更多
In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objectiv...In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload.展开更多
An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal ...An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms.展开更多
This paper presents a new genetic algorithm for job-shop scheduling problem. Based on schema theorem and building block hypothesis, a new crossover is proposed. By selecting short, low-order, highly fit schemas for ge...This paper presents a new genetic algorithm for job-shop scheduling problem. Based on schema theorem and building block hypothesis, a new crossover is proposed. By selecting short, low-order, highly fit schemas for genetic operator, the crossover can maintain a diversity of population without disrupting the characteristics and search the global optimization. Simulation results on famous benchmark problems MT06, MT10 and MT20 coded by Matlab show that our genetic operators are suitable to job-shop scheduling problems and outperform the previous GA-based approaches.展开更多
Ship outfitting is a key process in shipbuilding.Efficient and high-quality ship outfitting is a top priority for modern shipyards.These activities are conducted at different stations of shipyards.The outfitting plan ...Ship outfitting is a key process in shipbuilding.Efficient and high-quality ship outfitting is a top priority for modern shipyards.These activities are conducted at different stations of shipyards.The outfitting plan is one of the crucial issues in shipbuilding.In this paper,production scheduling and material ordering with endogenous uncertainty of the outfitting process are investigated.The uncertain factors in outfitting equipment production are usually decision-related,which leads to difficulties in addressing uncertainties in the outfitting production workshops before production is conducted according to plan.This uncertainty is regarded as endogenous uncertainty and can be treated as non-anticipativity constraints in the model.To address this problem,a stochastic two-stage programming model with endogenous uncertainty is established to optimize the outfitting job scheduling and raw material ordering process.A practical case of the shipyard of China Merchants Heavy Industry Co.,Ltd.is used to evaluate the performance of the proposed method.Satisfactory results are achieved at the lowest expected total cost as the complete kit rate of outfitting equipment is improved and emergency replenishment is reduced.展开更多
With the introduction of the“dual carbon”goal and the continuous promotion of low-carbon development,the integrated energy system(IES)has gradually become an effective way to save energy and reduce emissions.This st...With the introduction of the“dual carbon”goal and the continuous promotion of low-carbon development,the integrated energy system(IES)has gradually become an effective way to save energy and reduce emissions.This study proposes a low-carbon economic optimization scheduling model for an IES that considers carbon trading costs.With the goal of minimizing the total operating cost of the IES and considering the transferable and curtailable characteristics of the electric and thermal flexible loads,an optimal scheduling model of the IES that considers the cost of carbon trading and flexible loads on the user side was established.The role of flexible loads in improving the economy of an energy system was investigated using examples,and the rationality and effectiveness of the study were verified through a comparative analysis of different scenarios.The results showed that the total cost of the system in different scenarios was reduced by 18.04%,9.1%,3.35%,and 7.03%,respectively,whereas the total carbon emissions of the system were reduced by 65.28%,20.63%,3.85%,and 18.03%,respectively,when the carbon trading cost and demand-side flexible electric and thermal load responses were considered simultaneously.Flexible electrical and thermal loads did not have the same impact on the system performance.In the analyzed case,the total cost and carbon emissions of the system when only the flexible electrical load response was considered were lower than those when only the flexible thermal load response was taken into account.Photovoltaics have an excess of carbon trading credits and can profit from selling them,whereas other devices have an excess of carbon trading and need to buy carbon credits.展开更多
Time-Sensitive Network(TSN)with deterministic transmission capability is increasingly used in many emerging fields.It mainly guarantees the Quality of Service(QoS)of applications with strict requirements on time and s...Time-Sensitive Network(TSN)with deterministic transmission capability is increasingly used in many emerging fields.It mainly guarantees the Quality of Service(QoS)of applications with strict requirements on time and security.One of the core features of TSN is traffic scheduling with bounded low delay in the network.However,traffic scheduling schemes in TSN are usually synthesized offline and lack dynamism.To implement incremental scheduling of newly arrived traffic in TSN,we propose a Dynamic Response Incremental Scheduling(DR-IS)method for time-sensitive traffic and deploy it on a software-defined time-sensitive network architecture.Under the premise of meeting the traffic scheduling requirements,we adopt two modes,traffic shift and traffic exchange,to dynamically adjust the time slot injection position of the traffic in the original scheme,and determine the sending offset time of the new timesensitive traffic to minimize the global traffic transmission jitter.The evaluation results show that DRIS method can effectively control the large increase of traffic transmission jitter in incremental scheduling without affecting the transmission delay,thus realizing the dynamic incremental scheduling of time-sensitive traffic in TSN.展开更多
This paper reviews task scheduling frameworks,methods,and evaluation metrics of central processing unit-graphics processing unit(CPU-GPU)heterogeneous clusters.Task scheduling of CPU-GPU heterogeneous clusters can be ...This paper reviews task scheduling frameworks,methods,and evaluation metrics of central processing unit-graphics processing unit(CPU-GPU)heterogeneous clusters.Task scheduling of CPU-GPU heterogeneous clusters can be carried out on the system level,nodelevel,and device level.Most task-scheduling technologies are heuristic based on the experts’experience,while some technologies are based on statistic methods using machine learning,deep learning,or reinforcement learning.Many metrics have been adopted to evaluate and compare different task scheduling technologies that try to optimize different goals of task scheduling.Although statistic task scheduling has reached fewer research achievements than heuristic task scheduling,the statistic task scheduling still has significant research potential.展开更多
This paper investigates the age of information(AoI)-based multi-user mobile edge computing(MEC)network with partial offloading mode.The weighted sum AoI(WSA)is first analyzed and derived,and then a WSA minimization pr...This paper investigates the age of information(AoI)-based multi-user mobile edge computing(MEC)network with partial offloading mode.The weighted sum AoI(WSA)is first analyzed and derived,and then a WSA minimization problem is formulated by jointly optimizing the user scheduling and data assignment.Due to the non-analytic expression of the WSA w.r.t.the optimization variables and the unknowability of future network information,the problem cannot be solved with known solution methods.Therefore,an online Joint Partial Offloading and User Scheduling Optimization(JPOUSO)algorithm is proposed by transforming the original problem into a single-slot data assignment subproblem and a single-slot user scheduling sub-problem and solving the two sub-problems separately.We analyze the computational complexity of the presented JPO-USO algorithm,which is of O(N),with N being the number of users.Simulation results show that the proposed JPO-USO algorithm is able to achieve better AoI performance compared with various baseline methods.It is shown that both the user’s data assignment and the user’s AoI should be jointly taken into account to decrease the system WSA when scheduling users.展开更多
In this study,a novel residential virtual power plant(RVPP)scheduling method that leverages a gate recurrent unit(GRU)-integrated deep reinforcement learning(DRL)algorithm is proposed.In the proposed scheme,the GRU-in...In this study,a novel residential virtual power plant(RVPP)scheduling method that leverages a gate recurrent unit(GRU)-integrated deep reinforcement learning(DRL)algorithm is proposed.In the proposed scheme,the GRU-integrated DRL algorithm guides the RVPP to participate effectively in both the day-ahead and real-time markets,lowering the electricity purchase costs and consumption risks for end-users.The Lagrangian relaxation technique is introduced to transform the constrained Markov decision process(CMDP)into an unconstrained optimization problem,which guarantees that the constraints are strictly satisfied without determining the penalty coefficients.Furthermore,to enhance the scalability of the constrained soft actor-critic(CSAC)-based RVPP scheduling approach,a fully distributed scheduling architecture was designed to enable plug-and-play in the residential distributed energy resources(RDER).Case studies performed on the constructed RVPP scenario validated the performance of the proposed methodology in enhancing the responsiveness of the RDER to power tariffs,balancing the supply and demand of the power grid,and ensuring customer comfort.展开更多
In recent years,various internet architectures,such as Integrated Services(IntServ),Differentiated Services(DiffServ),Time Sensitive Networking(TSN)and Deterministic Networking(DetNet),have been proposed to meet the q...In recent years,various internet architectures,such as Integrated Services(IntServ),Differentiated Services(DiffServ),Time Sensitive Networking(TSN)and Deterministic Networking(DetNet),have been proposed to meet the quality-of-service(QoS)requirements of different network services.Concurrently,network calculus has found widespread application in network modeling and QoS analysis.Network calculus abstracts the details of how nodes or networks process data packets using the concept of service curves.This paper summarizes the service curves for typical scheduling algorithms,including Strict Priority(SP),Round Robin(RR),Cycling Queuing and Forwarding(CQF),Time Aware Shaper(TAS),Credit Based Shaper(CBS),and Asynchronous Traffic Shaper(ATS).It introduces the theory of network calculus and then provides an overview of various scheduling algorithms and their associated service curves.The delay bound analysis for different scheduling algorithms in specific scenarios is also conducted for more insights.展开更多
The flexible job-shop scheduling problem(FJSP)with combined processing constraints is a common scheduling problem in mixed-flow production lines.However,traditional methods for classic FJSP cannot be directly applied....The flexible job-shop scheduling problem(FJSP)with combined processing constraints is a common scheduling problem in mixed-flow production lines.However,traditional methods for classic FJSP cannot be directly applied.Targeting this problem,the process state model of a mixed-flow production line is analyzed.On this basis,a mathematical model of a mixed-flow job-shop scheduling problem with combined processing constraints is established based on the traditional FJSP.Then,an improved genetic algorithm with multi-segment encoding,crossover,and mutation is proposed for the mixed-flow production line problem.Finally,the proposed algorithm is applied to the production workshop of missile structural components at an aerospace institute to verify its feasibility and effectiveness.展开更多
The job shop scheduli ng problem has been studied for decades and known as an NP-hard problem. The fl exible job shop scheduling problem is a generalization of the classical job sche duling problem that allows an oper...The job shop scheduli ng problem has been studied for decades and known as an NP-hard problem. The fl exible job shop scheduling problem is a generalization of the classical job sche duling problem that allows an operation to be processed on one machine out of a set of machines. The problem is to assign each operation to a machine and find a sequence for the operations on the machine in order that the maximal completion time of all operations is minimized. A genetic algorithm is used to solve the f lexible job shop scheduling problem. A novel gene coding method aiming at job sh op problem is introduced which is intuitive and does not need repairing process to validate the gene. Computer simulations are carried out and the results show the effectiveness of the proposed algorithm.展开更多
An improved ant colony optimization (ACO) algorithm is utilized in cell scheduling of the flexible manufaturing process for considering the instrument constraint, manufacturing cost and time. Firstly, the initial we...An improved ant colony optimization (ACO) algorithm is utilized in cell scheduling of the flexible manufaturing process for considering the instrument constraint, manufacturing cost and time. Firstly, the initial weighted directional diagram is set up. Secondly, the algorithm based on the dynamic pheromone updating ensures the quick convergence and the optimal solution, thus improving the feasibility and the stability of the schedule system. Aiming at reducing collaboration with external partners, decreasing the total cost and balancing the production process, the algorithm is efficient in supporting the management process of the manufacturing cell and in strengthening the information arrangement capabitity of the scheduling system. Finally, experimental results of the improved algorithm are compared with those of other algorithms.展开更多
Aiming at the flexible manufacturing system with multi-machining and multi-assembly equipment, a new scheduling algorithm is proposed to decompose the assembly structure of the products, thus obtaining simple scheduli...Aiming at the flexible manufacturing system with multi-machining and multi-assembly equipment, a new scheduling algorithm is proposed to decompose the assembly structure of the products, thus obtaining simple scheduling problems and forming the cOrrespOnding agents. Then, the importance and the restriction of each agent are cOnsidered, to obtain an order of simple scheduling problems based on the cooperation game theory. With this order, the scheduling of sub-questions is implemented in term of rules, and the almost optimal scheduling results for meeting the restriction can be obtained. Experimental results verify the effectiveness of the proposed scheduling algorithm.展开更多
Petroleum, the most important energy source in the world, plays an essential role in securing economic development. If a petroleum shortage happens, it will severely disrupt production and life. Cross-regional emergen...Petroleum, the most important energy source in the world, plays an essential role in securing economic development. If a petroleum shortage happens, it will severely disrupt production and life. Cross-regional emergency scheduling can effectively alleviate a petroleum shortage and further enhance the efficiency of the emergency response. Considering the general lack of focus on cross-regional petroleum dispatching management, we propose a three-layer emergency scheduling network for petroleum based on a supernetwork model that can increase the regional emergency correlation by adding a transfer management process. Then, we compare the total demand for petroleum and the emergency costs considered in the petroleum emergency scheduling supernetwork model(the single-region and the cross-region scenarios).The result shows that the cross-regional emergency scheduling pattern can effectively enhance the efficiency of the emergency preparations and reduce the emergency costs in most cases. However, when the vulnerabilities in the crossregional link grow or the regional linkage decreases, the effect of single-regional scheduling is better. In addition, the advantages of the cross-regional emergency scheduling network will be strengthened with an increase in its maximum emergency capability. Nonetheless, this advantage will disappear when the petroleum demand in the crisis layer reaches the maximum emergency response capacity. Finally, according to the comparative analysis simulation among scenarios,certain strategic policy recommendations are suggested to improve the petroleum emergency scheduling ability in regions.These recommendations include strengthening the cross-regional coordination mechanism, increasing the modes of petroleum transportation and enhancing the carrying capacity of regional emergency routes.展开更多
Production schedules that provide optimal operating strategies while meeting practical,technical,and environmental constraints are an inseparable part of mining operations.Relying only on manual planning methods or co...Production schedules that provide optimal operating strategies while meeting practical,technical,and environmental constraints are an inseparable part of mining operations.Relying only on manual planning methods or computer software based on heuristic algorithms will lead to mine schedules that are not the optimal global solution.Mathematical mine planning models have been proved to be very effective in supporting decisions on sequencing the extraction of material in mines.The objective of this paper is to develop a practical optimization framework for caving operations’production scheduling.To overcome the size problem of mathematical programming models and to generate a robust practical near-optimal schedule,a multi-step method for long-term production scheduling of block caving is presented.A mixed-integer linear programming(MILP)formulation is used for each step.The formulations are developed,implemented,and verifed in the TOMLAB/CPLEX environment.The production scheduler aims to maximize the net present value of the mining operation while the mine planner has control over defned constraints.Application and comparison of the models for production scheduling using 298 drawpoints over 15 periods are presented.展开更多
Current SDN controllers suffer from a series of potential attacks. For example, malicious flow rules may lead to system disorder by introducing unexpected flow entries. In this paper, we propose Mcad-SA, an aware deci...Current SDN controllers suffer from a series of potential attacks. For example, malicious flow rules may lead to system disorder by introducing unexpected flow entries. In this paper, we propose Mcad-SA, an aware decision-making security architecture with multiple controllers, which could coordinate heterogeneous controllers internally as a "big" controller. This architecture includes an additional plane, the scheduling plane, which consists of transponder, sensor, decider and scheduler. Meanwhile it achieves the functions of communicating, supervising and scheduling between data and control plane. In this framework, we adopt the vote results from the majority of controllers to determine valid flow rules distributed to switches. Besides, an aware dynamic scheduling(ADS) mechanism is devised in scheduler to intensify security of Mcad-SA further. Combined with perception, ADS takes advantage of heterogeneity and redundancy of controllers to enable the control plane operate in a dynamic, reliable and unsteady state, which results in significant difficulty of probing systems and executing attacks. Simulation results demonstrate the proposed methods indicate better security resilience over traditional architectures as they have lower failure probability when facing attacks.展开更多
Goud computing is a new paradigm in which dynamic and virtualized computing resources are provided as services over the Internet. However, because cloud resource is open and dynamically configured, resource allocation...Goud computing is a new paradigm in which dynamic and virtualized computing resources are provided as services over the Internet. However, because cloud resource is open and dynamically configured, resource allocation and scheduling are extremely important challenges in cloud infrastructure. Based on distributed agents, this paper presents trusted data acquisition mechanism for efficient scheduling cloud resources to satisfy various user requests. Our mechanism defines, collects and analyzes multiple key trust targets of cloud service resources based on historical information of servers in a cloud data center. As a result, using our trust computing mechanism, cloud providers can utilize their resources efficiently and also provide highly trusted resources and services to many users.展开更多
文摘The fuzzy goal flexible job-shop scheduling problem (FGFJSP) is the extension of FJSP. Compared with the convention JSP, it can solve the fuzzy goal problem and meet suit requirements of the key job. The multi-object problem, such as the fuzzy cost, the fuzzy due-date, and the fuzzy makespan, etc, can be solved by FGFJSP. To optimize FGFJSP, an individual optimization and colony diversity genetic algorithm (IOCDGA) is presented to accelerate the convergence speed and to avoid the earliness. In IOCDGA, the colony average distance and the colony entropy are defined after the definition of the encoding model. The colony diversity is expressed by the colony average distance and the colony entropy. The crossover probability and the mutation probability are controlled by the colony diversity. The evolution emphasizes that sigle individual or a few individuals evolve into the best in IOCDGA, but not the all in classical GA. Computational results show that the algorithm is applicable and the number of iterations is less.
文摘In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload.
基金Supported by the National Natural Science Foundation of China(51175262)the Research Fund for Doctoral Program of Higher Education of China(20093218110020)+2 种基金the Jiangsu Province Science Foundation for Excellent Youths(BK201210111)the Jiangsu Province Industry-Academy-Research Grant(BY201220116)the Innovative and Excellent Foundation for Doctoral Dissertation of Nanjing University of Aeronautics and Astronautics(BCXJ10-09)
文摘An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms.
文摘This paper presents a new genetic algorithm for job-shop scheduling problem. Based on schema theorem and building block hypothesis, a new crossover is proposed. By selecting short, low-order, highly fit schemas for genetic operator, the crossover can maintain a diversity of population without disrupting the characteristics and search the global optimization. Simulation results on famous benchmark problems MT06, MT10 and MT20 coded by Matlab show that our genetic operators are suitable to job-shop scheduling problems and outperform the previous GA-based approaches.
基金supported in part by the High-tech ship scientific research project of the Ministry of Industry and Information Technology of the People’s Republic of China,and the National Nature Science Foundation of China(Grant No.71671113)the Science and Technology Department of Shaanxi Province(No.2020GY-219)the Ministry of Education Collaborative Project of Production,Learning and Research(No.201901024016).
文摘Ship outfitting is a key process in shipbuilding.Efficient and high-quality ship outfitting is a top priority for modern shipyards.These activities are conducted at different stations of shipyards.The outfitting plan is one of the crucial issues in shipbuilding.In this paper,production scheduling and material ordering with endogenous uncertainty of the outfitting process are investigated.The uncertain factors in outfitting equipment production are usually decision-related,which leads to difficulties in addressing uncertainties in the outfitting production workshops before production is conducted according to plan.This uncertainty is regarded as endogenous uncertainty and can be treated as non-anticipativity constraints in the model.To address this problem,a stochastic two-stage programming model with endogenous uncertainty is established to optimize the outfitting job scheduling and raw material ordering process.A practical case of the shipyard of China Merchants Heavy Industry Co.,Ltd.is used to evaluate the performance of the proposed method.Satisfactory results are achieved at the lowest expected total cost as the complete kit rate of outfitting equipment is improved and emergency replenishment is reduced.
基金supported by State Grid Shanxi Electric Power Company Science and Technology Project“Research on key technologies of carbon tracking and carbon evaluation for new power system”(Grant:520530230005)。
文摘With the introduction of the“dual carbon”goal and the continuous promotion of low-carbon development,the integrated energy system(IES)has gradually become an effective way to save energy and reduce emissions.This study proposes a low-carbon economic optimization scheduling model for an IES that considers carbon trading costs.With the goal of minimizing the total operating cost of the IES and considering the transferable and curtailable characteristics of the electric and thermal flexible loads,an optimal scheduling model of the IES that considers the cost of carbon trading and flexible loads on the user side was established.The role of flexible loads in improving the economy of an energy system was investigated using examples,and the rationality and effectiveness of the study were verified through a comparative analysis of different scenarios.The results showed that the total cost of the system in different scenarios was reduced by 18.04%,9.1%,3.35%,and 7.03%,respectively,whereas the total carbon emissions of the system were reduced by 65.28%,20.63%,3.85%,and 18.03%,respectively,when the carbon trading cost and demand-side flexible electric and thermal load responses were considered simultaneously.Flexible electrical and thermal loads did not have the same impact on the system performance.In the analyzed case,the total cost and carbon emissions of the system when only the flexible electrical load response was considered were lower than those when only the flexible thermal load response was taken into account.Photovoltaics have an excess of carbon trading credits and can profit from selling them,whereas other devices have an excess of carbon trading and need to buy carbon credits.
基金supported by the Innovation Scientists and Technicians Troop Construction Projects of Henan Province(224000510002)。
文摘Time-Sensitive Network(TSN)with deterministic transmission capability is increasingly used in many emerging fields.It mainly guarantees the Quality of Service(QoS)of applications with strict requirements on time and security.One of the core features of TSN is traffic scheduling with bounded low delay in the network.However,traffic scheduling schemes in TSN are usually synthesized offline and lack dynamism.To implement incremental scheduling of newly arrived traffic in TSN,we propose a Dynamic Response Incremental Scheduling(DR-IS)method for time-sensitive traffic and deploy it on a software-defined time-sensitive network architecture.Under the premise of meeting the traffic scheduling requirements,we adopt two modes,traffic shift and traffic exchange,to dynamically adjust the time slot injection position of the traffic in the original scheme,and determine the sending offset time of the new timesensitive traffic to minimize the global traffic transmission jitter.The evaluation results show that DRIS method can effectively control the large increase of traffic transmission jitter in incremental scheduling without affecting the transmission delay,thus realizing the dynamic incremental scheduling of time-sensitive traffic in TSN.
基金supported by ZTE‑University‑Institute Fund Project under Grant No.IA20230629009.
文摘This paper reviews task scheduling frameworks,methods,and evaluation metrics of central processing unit-graphics processing unit(CPU-GPU)heterogeneous clusters.Task scheduling of CPU-GPU heterogeneous clusters can be carried out on the system level,nodelevel,and device level.Most task-scheduling technologies are heuristic based on the experts’experience,while some technologies are based on statistic methods using machine learning,deep learning,or reinforcement learning.Many metrics have been adopted to evaluate and compare different task scheduling technologies that try to optimize different goals of task scheduling.Although statistic task scheduling has reached fewer research achievements than heuristic task scheduling,the statistic task scheduling still has significant research potential.
基金supported in part by the Fundamental Research Funds for the Central Universities under Grant 2022JBGP003in part by the National Natural Science Foundation of China(NSFC)under Grant 62071033in part by ZTE IndustryUniversity-Institute Cooperation Funds under Grant No.IA20230217003。
文摘This paper investigates the age of information(AoI)-based multi-user mobile edge computing(MEC)network with partial offloading mode.The weighted sum AoI(WSA)is first analyzed and derived,and then a WSA minimization problem is formulated by jointly optimizing the user scheduling and data assignment.Due to the non-analytic expression of the WSA w.r.t.the optimization variables and the unknowability of future network information,the problem cannot be solved with known solution methods.Therefore,an online Joint Partial Offloading and User Scheduling Optimization(JPOUSO)algorithm is proposed by transforming the original problem into a single-slot data assignment subproblem and a single-slot user scheduling sub-problem and solving the two sub-problems separately.We analyze the computational complexity of the presented JPO-USO algorithm,which is of O(N),with N being the number of users.Simulation results show that the proposed JPO-USO algorithm is able to achieve better AoI performance compared with various baseline methods.It is shown that both the user’s data assignment and the user’s AoI should be jointly taken into account to decrease the system WSA when scheduling users.
基金supported by the Sichuan Science and Technology Program(grant number 2022YFG0123).
文摘In this study,a novel residential virtual power plant(RVPP)scheduling method that leverages a gate recurrent unit(GRU)-integrated deep reinforcement learning(DRL)algorithm is proposed.In the proposed scheme,the GRU-integrated DRL algorithm guides the RVPP to participate effectively in both the day-ahead and real-time markets,lowering the electricity purchase costs and consumption risks for end-users.The Lagrangian relaxation technique is introduced to transform the constrained Markov decision process(CMDP)into an unconstrained optimization problem,which guarantees that the constraints are strictly satisfied without determining the penalty coefficients.Furthermore,to enhance the scalability of the constrained soft actor-critic(CSAC)-based RVPP scheduling approach,a fully distributed scheduling architecture was designed to enable plug-and-play in the residential distributed energy resources(RDER).Case studies performed on the constructed RVPP scenario validated the performance of the proposed methodology in enhancing the responsiveness of the RDER to power tariffs,balancing the supply and demand of the power grid,and ensuring customer comfort.
基金supported by ZTE Industry-University-Institute Cooperation Funds。
文摘In recent years,various internet architectures,such as Integrated Services(IntServ),Differentiated Services(DiffServ),Time Sensitive Networking(TSN)and Deterministic Networking(DetNet),have been proposed to meet the quality-of-service(QoS)requirements of different network services.Concurrently,network calculus has found widespread application in network modeling and QoS analysis.Network calculus abstracts the details of how nodes or networks process data packets using the concept of service curves.This paper summarizes the service curves for typical scheduling algorithms,including Strict Priority(SP),Round Robin(RR),Cycling Queuing and Forwarding(CQF),Time Aware Shaper(TAS),Credit Based Shaper(CBS),and Asynchronous Traffic Shaper(ATS).It introduces the theory of network calculus and then provides an overview of various scheduling algorithms and their associated service curves.The delay bound analysis for different scheduling algorithms in specific scenarios is also conducted for more insights.
基金supported by the National Key Research and Development Program of China (No.2020YFB1710500)the National Natural Science Foundation of China(No.51805253)the Fundamental Research Funds for the Central Universities(No. NP2020304)
文摘The flexible job-shop scheduling problem(FJSP)with combined processing constraints is a common scheduling problem in mixed-flow production lines.However,traditional methods for classic FJSP cannot be directly applied.Targeting this problem,the process state model of a mixed-flow production line is analyzed.On this basis,a mathematical model of a mixed-flow job-shop scheduling problem with combined processing constraints is established based on the traditional FJSP.Then,an improved genetic algorithm with multi-segment encoding,crossover,and mutation is proposed for the mixed-flow production line problem.Finally,the proposed algorithm is applied to the production workshop of missile structural components at an aerospace institute to verify its feasibility and effectiveness.
文摘The job shop scheduli ng problem has been studied for decades and known as an NP-hard problem. The fl exible job shop scheduling problem is a generalization of the classical job sche duling problem that allows an operation to be processed on one machine out of a set of machines. The problem is to assign each operation to a machine and find a sequence for the operations on the machine in order that the maximal completion time of all operations is minimized. A genetic algorithm is used to solve the f lexible job shop scheduling problem. A novel gene coding method aiming at job sh op problem is introduced which is intuitive and does not need repairing process to validate the gene. Computer simulations are carried out and the results show the effectiveness of the proposed algorithm.
文摘An improved ant colony optimization (ACO) algorithm is utilized in cell scheduling of the flexible manufaturing process for considering the instrument constraint, manufacturing cost and time. Firstly, the initial weighted directional diagram is set up. Secondly, the algorithm based on the dynamic pheromone updating ensures the quick convergence and the optimal solution, thus improving the feasibility and the stability of the schedule system. Aiming at reducing collaboration with external partners, decreasing the total cost and balancing the production process, the algorithm is efficient in supporting the management process of the manufacturing cell and in strengthening the information arrangement capabitity of the scheduling system. Finally, experimental results of the improved algorithm are compared with those of other algorithms.
文摘Aiming at the flexible manufacturing system with multi-machining and multi-assembly equipment, a new scheduling algorithm is proposed to decompose the assembly structure of the products, thus obtaining simple scheduling problems and forming the cOrrespOnding agents. Then, the importance and the restriction of each agent are cOnsidered, to obtain an order of simple scheduling problems based on the cooperation game theory. With this order, the scheduling of sub-questions is implemented in term of rules, and the almost optimal scheduling results for meeting the restriction can be obtained. Experimental results verify the effectiveness of the proposed scheduling algorithm.
基金supported by the Fundamental Research Funds for the Central Universities (Grant No. 2014XT06)
文摘Petroleum, the most important energy source in the world, plays an essential role in securing economic development. If a petroleum shortage happens, it will severely disrupt production and life. Cross-regional emergency scheduling can effectively alleviate a petroleum shortage and further enhance the efficiency of the emergency response. Considering the general lack of focus on cross-regional petroleum dispatching management, we propose a three-layer emergency scheduling network for petroleum based on a supernetwork model that can increase the regional emergency correlation by adding a transfer management process. Then, we compare the total demand for petroleum and the emergency costs considered in the petroleum emergency scheduling supernetwork model(the single-region and the cross-region scenarios).The result shows that the cross-regional emergency scheduling pattern can effectively enhance the efficiency of the emergency preparations and reduce the emergency costs in most cases. However, when the vulnerabilities in the crossregional link grow or the regional linkage decreases, the effect of single-regional scheduling is better. In addition, the advantages of the cross-regional emergency scheduling network will be strengthened with an increase in its maximum emergency capability. Nonetheless, this advantage will disappear when the petroleum demand in the crisis layer reaches the maximum emergency response capacity. Finally, according to the comparative analysis simulation among scenarios,certain strategic policy recommendations are suggested to improve the petroleum emergency scheduling ability in regions.These recommendations include strengthening the cross-regional coordination mechanism, increasing the modes of petroleum transportation and enhancing the carrying capacity of regional emergency routes.
文摘Production schedules that provide optimal operating strategies while meeting practical,technical,and environmental constraints are an inseparable part of mining operations.Relying only on manual planning methods or computer software based on heuristic algorithms will lead to mine schedules that are not the optimal global solution.Mathematical mine planning models have been proved to be very effective in supporting decisions on sequencing the extraction of material in mines.The objective of this paper is to develop a practical optimization framework for caving operations’production scheduling.To overcome the size problem of mathematical programming models and to generate a robust practical near-optimal schedule,a multi-step method for long-term production scheduling of block caving is presented.A mixed-integer linear programming(MILP)formulation is used for each step.The formulations are developed,implemented,and verifed in the TOMLAB/CPLEX environment.The production scheduler aims to maximize the net present value of the mining operation while the mine planner has control over defned constraints.Application and comparison of the models for production scheduling using 298 drawpoints over 15 periods are presented.
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No.61521003)the National Key R&D Program of China (No.2016YFB0800100,No.2016YFB0800101)the National Natural Science Foundation of China (No.61602509)
文摘Current SDN controllers suffer from a series of potential attacks. For example, malicious flow rules may lead to system disorder by introducing unexpected flow entries. In this paper, we propose Mcad-SA, an aware decision-making security architecture with multiple controllers, which could coordinate heterogeneous controllers internally as a "big" controller. This architecture includes an additional plane, the scheduling plane, which consists of transponder, sensor, decider and scheduler. Meanwhile it achieves the functions of communicating, supervising and scheduling between data and control plane. In this framework, we adopt the vote results from the majority of controllers to determine valid flow rules distributed to switches. Besides, an aware dynamic scheduling(ADS) mechanism is devised in scheduler to intensify security of Mcad-SA further. Combined with perception, ADS takes advantage of heterogeneity and redundancy of controllers to enable the control plane operate in a dynamic, reliable and unsteady state, which results in significant difficulty of probing systems and executing attacks. Simulation results demonstrate the proposed methods indicate better security resilience over traditional architectures as they have lower failure probability when facing attacks.
基金supported by the National Basic Research Program of China (973 Program) (No. 2012CB821200 (2012CB821206))the National Nature Science Foundation of China (No.61003281, No.91024001 and No.61070142)+1 种基金Beijing Natural Science Foundation (Study on Internet Multi-mode Area Information Accurate Searching and Mining Based on Agent, No.4111002)the Chinese Universities Scientific Fund under Grant No.BUPT 2009RC0201
文摘Goud computing is a new paradigm in which dynamic and virtualized computing resources are provided as services over the Internet. However, because cloud resource is open and dynamically configured, resource allocation and scheduling are extremely important challenges in cloud infrastructure. Based on distributed agents, this paper presents trusted data acquisition mechanism for efficient scheduling cloud resources to satisfy various user requests. Our mechanism defines, collects and analyzes multiple key trust targets of cloud service resources based on historical information of servers in a cloud data center. As a result, using our trust computing mechanism, cloud providers can utilize their resources efficiently and also provide highly trusted resources and services to many users.