The uniformity of impurity distribution in a melt growth process is significantly determined by the melt convection and melt/crystal interface.Therefore,it is important to investigate the coupling effects of convectio...The uniformity of impurity distribution in a melt growth process is significantly determined by the melt convection and melt/crystal interface.Therefore,it is important to investigate the coupling effects of convection,segregation and growth interface shapes in order to largely improve the crystal quality. In this paper,we employ a finite element algorithm to study the vertical Bridgman growth process of Te doped GaSb crystals.The calculation model consists of unsteady state equations of heat transfer,mass transfer and momentum transfer,as well as their correspondingly boundary and initial conditions.A boundary conformal mapping technique is used to obtain the free melt/crystal interface shape and position which is a prior unknown.The set of algebraic equations obtained after finite element discretion is iteratively solved by Newton Raphson method until a given criterion is reached.展开更多
文摘The uniformity of impurity distribution in a melt growth process is significantly determined by the melt convection and melt/crystal interface.Therefore,it is important to investigate the coupling effects of convection,segregation and growth interface shapes in order to largely improve the crystal quality. In this paper,we employ a finite element algorithm to study the vertical Bridgman growth process of Te doped GaSb crystals.The calculation model consists of unsteady state equations of heat transfer,mass transfer and momentum transfer,as well as their correspondingly boundary and initial conditions.A boundary conformal mapping technique is used to obtain the free melt/crystal interface shape and position which is a prior unknown.The set of algebraic equations obtained after finite element discretion is iteratively solved by Newton Raphson method until a given criterion is reached.