Tubular hydroforming has attracted increased attention in the vehicle industry recently. This paper covers a complete hydroforming process design for an instrum ent panel frame by finite element simulation using the e...Tubular hydroforming has attracted increased attention in the vehicle industry recently. This paper covers a complete hydroforming process design for an instrum ent panel frame by finite element simulation using the explicit code LS-DYNA. The manufacturing process for the instrument panel frame consists of tube pre-be nding and final hydroforming. To accomplish hydroforming process design successf ully, a thorough investigation of proper combination of process parameters such as internal hydraulic pressure and axial feeding is carried out by finite element simulation to predict the tube wall thickness and shape. An optimized process parameter combination is obtained and verified by the instrument panel frame hyd roforming experiment. The experiment shows that designed process parameters can be used in real production through FEA simulation, but tubular thinned amplitu de by FEA is less than that with the experiment.展开更多
转向系统和仪表板的怠速振动是整车NVH(Noise Vibration and Harness)性能的重要组成部分,为了满足NVH要求,运用HyperMesh软件建立汽车仪表板及转向管柱的有限元模型,并运用NASTRAN软件计算仪表板频率在35 Hz以下的局部或整体固有模态...转向系统和仪表板的怠速振动是整车NVH(Noise Vibration and Harness)性能的重要组成部分,为了满足NVH要求,运用HyperMesh软件建立汽车仪表板及转向管柱的有限元模型,并运用NASTRAN软件计算仪表板频率在35 Hz以下的局部或整体固有模态特性及转向盘上下振动与左右振动频率.结果表明,仪表板处的局部振动频率与发动机怠速激振频率接近,容易产生怠速共振现象,最后提出改进建议以避免发生怠速共振现象,从而改善汽车的NVH性能.展开更多
文摘Tubular hydroforming has attracted increased attention in the vehicle industry recently. This paper covers a complete hydroforming process design for an instrum ent panel frame by finite element simulation using the explicit code LS-DYNA. The manufacturing process for the instrument panel frame consists of tube pre-be nding and final hydroforming. To accomplish hydroforming process design successf ully, a thorough investigation of proper combination of process parameters such as internal hydraulic pressure and axial feeding is carried out by finite element simulation to predict the tube wall thickness and shape. An optimized process parameter combination is obtained and verified by the instrument panel frame hyd roforming experiment. The experiment shows that designed process parameters can be used in real production through FEA simulation, but tubular thinned amplitu de by FEA is less than that with the experiment.
文摘转向系统和仪表板的怠速振动是整车NVH(Noise Vibration and Harness)性能的重要组成部分,为了满足NVH要求,运用HyperMesh软件建立汽车仪表板及转向管柱的有限元模型,并运用NASTRAN软件计算仪表板频率在35 Hz以下的局部或整体固有模态特性及转向盘上下振动与左右振动频率.结果表明,仪表板处的局部振动频率与发动机怠速激振频率接近,容易产生怠速共振现象,最后提出改进建议以避免发生怠速共振现象,从而改善汽车的NVH性能.