期刊文献+
共找到256篇文章
< 1 2 13 >
每页显示 20 50 100
Forecasting of wind velocity:An improved SVM algorithm combined with simulated annealing 被引量:2
1
作者 刘金朋 牛东晓 +1 位作者 张宏运 王官庆 《Journal of Central South University》 SCIE EI CAS 2013年第2期451-456,共6页
Accurate forecasting of wind velocity can improve the economic dispatch and safe operation of the power system. Support vector machine (SVM) has been proved to be an efficient approach for forecasting. According to th... Accurate forecasting of wind velocity can improve the economic dispatch and safe operation of the power system. Support vector machine (SVM) has been proved to be an efficient approach for forecasting. According to the analysis with support vector machine method, the drawback of determining the parameters only by experts' experience should be improved. After a detailed description of the methodology of SVM and simulated annealing, an improved algorithm was proposed for the automatic optimization of parameters using SVM method. An example has proved that the proposed method can efficiently select the parameters of the SVM method. And by optimizing the parameters, the forecasting accuracy of the max wind velocity increases by 34.45%, which indicates that the new SASVM model improves the forecasting accuracy. 展开更多
关键词 wind velocity forecasting improved algorithm simulated annealing support vector machine
在线阅读 下载PDF
电力变压器内部故障的递进分层诊断方法 被引量:1
2
作者 咸日常 李云淏 +4 位作者 刘焕国 王昭璇 张海强 胡玉耀 王玮 《电网技术》 北大核心 2025年第4期1726-1734,I0079,I0080,共11页
电力变压器内部故障成因复杂、种类繁多,精确诊断难度大,现有诊断技术大多滞留于故障定性阶段。为实现多类型故障的精准定位,该文通过建立多状态量与故障特征之间的递进映射关系,提出一种改进灰狼算法与最小二乘支持向量机耦合的电力变... 电力变压器内部故障成因复杂、种类繁多,精确诊断难度大,现有诊断技术大多滞留于故障定性阶段。为实现多类型故障的精准定位,该文通过建立多状态量与故障特征之间的递进映射关系,提出一种改进灰狼算法与最小二乘支持向量机耦合的电力变压器故障递进分层诊断方法。首先介绍改进灰狼算法与最小二乘支持向量机的原理,建立电力变压器故障递进分层、自动诊断及定位模型;其次基于300组电力变压器的状态量,利用核主成分分析法进行降维处理,选取线性无关的特征状态量,依据DL/T 1685—2017《油浸式变压器状态评价导则》进行离散化处理,借助算法模型递进分层、自动诊断:第一层诊断故障回路、第二层确定故障部位、第三层明确故障原因,得到各分类器的诊断准确率及惩罚系数和核函数参数的最优组合解,并与其他算法模型的故障诊断结果进行分析对比;最后以实际故障案例验证方法的有效性。结果表明:该文所提诊断模型比其他方法拥有更高准确率和更快的运算速度。 展开更多
关键词 电力变压器 改进灰狼算法 最小二乘支持向量机 多状态量 内部故障 递进分层诊断
在线阅读 下载PDF
基于改进北方苍鹰算法优化SVM的轴承故障诊断研究
3
作者 吴晓君 李渠伟 《机械强度》 北大核心 2025年第5期80-89,共10页
针对群智能算法优化支持向量机(Support Vector Machine,SVM)模型时容易遭遇局部最优的问题,提出一种改进北方苍鹰优化(Improved Northern Goshawk Optimization,INGO)算法,并将其应用于滚动轴承的故障诊断。通过引入基于余弦变化的自... 针对群智能算法优化支持向量机(Support Vector Machine,SVM)模型时容易遭遇局部最优的问题,提出一种改进北方苍鹰优化(Improved Northern Goshawk Optimization,INGO)算法,并将其应用于滚动轴承的故障诊断。通过引入基于余弦变化的自适应惯性权重因子以及柯西变异策略来改进北方苍鹰优化(Northern Goshawk Optimization,NGO)算法,并结合SVM构建INGO-SVM故障诊断模型。为评估改进算法的性能,首先,使用基准测试函数进行了试验,并将改进算法与现有的NGO、粒子群优化(Particle Swarm Optimization,PSO)算法、麻雀搜索算法(Sparrow Search Algorithm,SSA)等进行比较,改进算法的性能在一定程度上有所提升。然后,通过小波包分解对原始诊断信号进行特征提取并划分出10种类别,使用第3层各频段的能量作为特征向量,输入到故障诊断模型;最后,比较了改进算法与其他3种算法在优化SVM参数进行故障分类时的性能。结果表明,改进算法能够有效准确地实现不同故障的分类,准确率可达99.39%,验证了该方法的有效性和可行性。 展开更多
关键词 故障诊断 改进北方苍鹰优化算法 柯西变异策略 小波包分解 支持向量机
在线阅读 下载PDF
基于RTSWMFE,IS-GSE与COOT-SVM的行星齿轮箱故障诊断
4
作者 戚晓利 杨艳 +1 位作者 崔创创 程主梓 《振动.测试与诊断》 北大核心 2025年第1期132-139,205,共9页
针对行星齿轮箱特征提取困难的问题,提出一种基于精细时移加权多尺度模糊熵(refined time⁃shift weighted multiscale fuzzy entropy,简称RTSWMFE)、改进监督型几何和统计保持流形嵌入(improved supervised geometry and statistics⁃pre... 针对行星齿轮箱特征提取困难的问题,提出一种基于精细时移加权多尺度模糊熵(refined time⁃shift weighted multiscale fuzzy entropy,简称RTSWMFE)、改进监督型几何和统计保持流形嵌入(improved supervised geometry and statistics⁃preserving manifold embedding,简称IS⁃GSE)和白骨顶优化算法支持向量机(coot optimization algorithm support vector machine,简称COOT⁃SVM)的行星齿轮箱故障诊断方法。首先,利用RTSWMFE提取高维故障特征信息;其次,采用IS⁃GSE对高维特征进行降维,提取出敏感、低维的特征;最后,将低维特征输入COOT⁃SVM中进行识别分类。行星齿轮箱故障诊断实验结果表明:IS⁃GSE方法采用余弦相似度与欧式距离相结合的距离度量方式,并融入监督学习思想,降维效果较佳;COOT⁃SVM方法对经RTSWMFE和IS⁃GSE二次提取的故障特征识别精度达到100%。 展开更多
关键词 故障诊断 行星齿轮箱 精细时移加权多尺度模糊熵 改进监督型几何和统计保持流形嵌入 白骨顶优化算法优化支持向量机
在线阅读 下载PDF
基于INGO-SVM的输电铁塔地脚螺栓螺母缺失无损检测方法 被引量:1
5
作者 刘阳 张璐 +3 位作者 吴德强 周青 张川 王彦海 《高压电器》 北大核心 2025年第2期130-140,共11页
为了无损检测埋置于混凝土中的输电铁塔地脚螺栓有无螺母缺失缺陷,保障输电线路安全运行,文中提出了一种基于改进北方苍鹰优化算法(improve northern goshawk optimization,INGO)优化的支持向量机(support vector machine,SVM)分类检测... 为了无损检测埋置于混凝土中的输电铁塔地脚螺栓有无螺母缺失缺陷,保障输电线路安全运行,文中提出了一种基于改进北方苍鹰优化算法(improve northern goshawk optimization,INGO)优化的支持向量机(support vector machine,SVM)分类检测方法(INGO-SVM):首先,通过Cubic混沌映射与小孔成像反向学习策略增加北方苍鹰优化算法(northern goshawk optimization,NGO)种群的多样性,并在优化初始解的同时增加种群的搜索区域,使算法尽可能的找到潜在的最优解并分析优化效果;其次,将INGO应用于SVM的核心参数寻优,得到分类模型;最后,将螺杆直径、保护层厚度、垫板厚度以及电磁无损检测得到的磁场强度作为输入量,输出地脚螺栓螺杆上螺母个数,判断缺陷类型;实验结果表明,相较于SVM,提出的INGO-SVM模型在输电铁塔地脚螺栓螺母缺失分类中的均方根误差、平均相对误差以及平均绝对误差分别降低了31.7%、60.7%、68.9%,验证了该方法解决地脚螺栓螺母缺失无损检测分类问题的有效性。 展开更多
关键词 输电铁塔地脚螺栓 螺母缺失缺陷 改进北方苍鹰优化算法 支持向量机 电磁无损检测
在线阅读 下载PDF
煤与瓦斯突出预测的NN-SVM模型 被引量:16
6
作者 谢国民 谢鸿 +1 位作者 付华 闫孝姮 《传感技术学报》 CAS CSCD 北大核心 2016年第5期733-738,共6页
为提高煤与瓦斯突出预测的精度和速度,通过基于邻域粗糙集(NRS)理论对特征向量降维,提取出影响煤与瓦斯突出的核心致突因素,采用改进的支持向量机(NN-SVM)理论来构建煤与瓦斯突出风险与由各种致突因素组成的特征向量之间的非线性关系。... 为提高煤与瓦斯突出预测的精度和速度,通过基于邻域粗糙集(NRS)理论对特征向量降维,提取出影响煤与瓦斯突出的核心致突因素,采用改进的支持向量机(NN-SVM)理论来构建煤与瓦斯突出风险与由各种致突因素组成的特征向量之间的非线性关系。从而建立了基于邻域粗糙集(NRS)与改进的支持向量机(NN-SVM)相结合的煤与瓦斯突出预测模型。实验结果表明,该预测模型预测精度高,运算速度更快,同时还具有很好的泛化能力。 展开更多
关键词 煤与瓦斯突出 预测模型 邻域粗糙集理论 改进的支持向量机
在线阅读 下载PDF
基于改进联合分布适配和支持向量机的谐波减速器故障诊断
7
作者 石超 刘彪 +2 位作者 郭世杰 唐术锋 吕贺 《机电工程》 北大核心 2025年第3期441-450,共10页
在对谐波减速器进行变工况故障诊断时,一般难以获得大量的带标签数据,从而导致所训练的模型识别准确率较低。针对这一问题,提出了一种基于改进联合分布适配和支持向量机的迁移模型(方法),从而对谐波减速器进行了故障诊断。首先,对周期... 在对谐波减速器进行变工况故障诊断时,一般难以获得大量的带标签数据,从而导致所训练的模型识别准确率较低。针对这一问题,提出了一种基于改进联合分布适配和支持向量机的迁移模型(方法),从而对谐波减速器进行了故障诊断。首先,对周期样本进行了时域、频域以及熵特征的多特征提取,构造了样本集;然后,针对联合适配(JDA)对齐两域状态下,未考虑到数据潜在的几何结构问题,在JDA的基础上增加了联合分布的权重因子以及加权流形正则化项,并使用支持向量机(SVM)进行了伪标签的迭代更新,构造了改进联合分布适配-支持向量机(IJDA-SVM)迁移模型;最后,使用实验所得的谐波减速器振动信号数据以及滚动轴承公开数据集对该方法的有效性进行了验证。研究结果表明:IJDA-SVM在谐波减速器单域诊断效果上,最高识别率可达97.25%,平均识别率为94.08%,在谐波减速器多域诊断效果上,最高识别率可达95.25%,平均识别率为92.5%。采用该方法能够实现变工况谐波减速器的故障诊断目的,其具有诊断精度高、泛化效果好的优点。 展开更多
关键词 变速器 多域故障诊断 变工况 迁移学习 改进联合分布适配-支持向量机 流形正则化
在线阅读 下载PDF
基于特征提取与改进POA的光伏阵列故障诊断
8
作者 韩茂林 杨琛 +2 位作者 牛锋杰 周宁 周定璇 《电子测量与仪器学报》 北大核心 2025年第4期258-269,共12页
光伏阵列常处于复杂恶劣的环境中,易发生多种类型和不同程度的故障。为提高光伏阵列在恶劣环境下的故障诊断准确率,提出一种基于特征提取与改进鹈鹕算法(IPOA)优化支持向量机(SVM)的光伏阵列故障诊断模型算法。首先,在MATLAB/Simulink... 光伏阵列常处于复杂恶劣的环境中,易发生多种类型和不同程度的故障。为提高光伏阵列在恶劣环境下的故障诊断准确率,提出一种基于特征提取与改进鹈鹕算法(IPOA)优化支持向量机(SVM)的光伏阵列故障诊断模型算法。首先,在MATLAB/Simulink仿真平台对15种典型故障状态进行模拟,构建12维故障特征向量,并采用核主成分分析(KPCA)进行特征融合与提取,以增强特征表达能力;其次,针对传统鹈鹕算法在全局搜索与局部开发中的局限性,引入改进的Tent混沌映射、惯性权重、非线性收敛因子及自适应t分布变异策略,较大程度提升算法寻优性能;最后通过IPOA对SVM模型的惩罚因子C与核参数γ进行优化,建立IPOA-SVM光伏阵列故障诊断模型,并分别通过仿真模拟与实验测试对模型进行验证。结果表明,与传统6维特征量相比,采用所提12维特征量的诊断准确率更高;改进的算法模型基于仿真数据和实验数据的故障诊断分类准确率分别达到98.55%和97.93%,明显优于其他对比算法模型,在光伏阵列故障诊断中具有更高的准确率。 展开更多
关键词 光伏阵列 故障诊断 特征提取 支持向量机 改进鹈鹕优化算法
在线阅读 下载PDF
基于SPA和IRCMMPE的旋转机械损伤识别方法
9
作者 李恒亮 张思婉 郭衡 《机电工程》 北大核心 2025年第6期1045-1054,共10页
基于单通道信号的旋转机械故障诊断方法的故障诊断效果通常比较依赖信号的质量,针对这一问题,提出了一种基于平滑先验分析(SPA)、改进精细复合多变量多尺度排列熵(IRCMMPE)和麻雀搜索算法优化支持向量机(SSA-SVM)的旋转机械损伤识别策... 基于单通道信号的旋转机械故障诊断方法的故障诊断效果通常比较依赖信号的质量,针对这一问题,提出了一种基于平滑先验分析(SPA)、改进精细复合多变量多尺度排列熵(IRCMMPE)和麻雀搜索算法优化支持向量机(SSA-SVM)的旋转机械损伤识别策略。首先,使用SPA将单通道信号分解为趋势项和去趋势项两种完全不同的分量,减少了分量的冗余,并将其组装为多通道信号以实现对样本的扩充;然后,采用IRCMMPE对多通道信号进行了特征提取以对比验证两个分量之间的相关性,获取了更能反映故障特性的特征;最后,将故障特征输入至SSA-SVM分类器中进行了故障识别,完成了对旋转机械的故障辨识和故障程度的判断,利用三个旋转机械数据集对SPA-IRCMMPE故障诊断方法的有效性进行了实验分析,并与其他故障诊断方法进行了对比研究。研究结果表明:SPA-IRCMMPE模型在诊断旋转机械不同故障类型时分别取得了100%和99.2%的识别准确率,平均识别准确率分别为99.76%和99.92%;而自制数据集的诊断精度达到了100%。相较于其他故障诊断方法,SPA-IRCMMPE模型仅需使用单个通道的振动信号且无需进行分量重要性评估,避免了分量取舍的问题,对振动信号的利用效率较高。 展开更多
关键词 旋转机械单通道信号 故障诊断 麻雀搜索算法优化支持向量机 改进精细复合多变量多尺度排列熵 平滑先验分析 离心泵 滚动轴承
在线阅读 下载PDF
基于KPCA-ISSA-SVM的控制图模式识别
10
作者 梁旭 张朝阳 +1 位作者 吉卫喜 张文博 《组合机床与自动化加工技术》 北大核心 2025年第7期128-134,140,共8页
针对制造企业产品生产过程中质量监控智能化程度不足的问题,提出一种基于核主成分分析法(KPCA)与改进麻雀搜索算法(ISSA)优化支持向量机(SVM)的控制图模式识别方法。首先通过KPCA对控制图原始数据进行降维;其次,引入Logistic-Tent(LT)... 针对制造企业产品生产过程中质量监控智能化程度不足的问题,提出一种基于核主成分分析法(KPCA)与改进麻雀搜索算法(ISSA)优化支持向量机(SVM)的控制图模式识别方法。首先通过KPCA对控制图原始数据进行降维;其次,引入Logistic-Tent(LT)复合映射和高斯变异来改进麻雀搜索算法对SVM的关键参数进行寻优;接着建立KPCA-ISSA-SVM模型对控制图模式进行识别;最后通过仿真实验,将所提模型与RF、CNN、SVM、KPCA-SVM、KPCA-SSA-SVM、KPCA-PSO-SVM模型进行对比,并以某电梯零部件企业的机加工车间为例,验证了该方法的可行性和有效性。仿真与实例结果表明,所提方法是一种更有效的控制图模式识别方法。 展开更多
关键词 控制图 模式识别 核主成分分析 改进麻雀搜索算法 支持向量机
在线阅读 下载PDF
基于PCA-IPSO-LSSVM的航材备件需求预测模型
11
作者 许浩 田才艳 毛瑞柯 《科学技术与工程》 北大核心 2025年第9期3938-3944,共7页
为解决航材备件需求预测中,因航材消耗影响因素多,样本数据量少从而造成预测效果差等问题。提出一种基于主成分分析(principal component analysis,PCA)与改进粒子群算法(improved particle swarm optimization,IPSO)及最小二乘支持向量... 为解决航材备件需求预测中,因航材消耗影响因素多,样本数据量少从而造成预测效果差等问题。提出一种基于主成分分析(principal component analysis,PCA)与改进粒子群算法(improved particle swarm optimization,IPSO)及最小二乘支持向量机(least square support vector machine,LSSVM)的航材备件需求预测模型,首先利用主成分分析法筛选出航材备件主要影响因素,然后使用改进粒子群算法优化最小二乘支持向量机参数组合,最后使用筛选结果及优化参数组合完成PCA-IPSO-LSSVM航材备件需求预测模型训练。与其他4个预测模型相比,PCA-IPSO-LSSVM模型预测精度最高,测试集的均方根误差(root mean squared error,RMSE)和平均相对误差(mean relative error,MRE)分别为3.24和4.23%,表明模型具有较好的预测精度和拟合效果。 展开更多
关键词 航材需求预测 主成分分析 改进粒子群算法 最小二乘支持向量机
在线阅读 下载PDF
特征降维下基于LSSA-SVM的转子系统故障诊断模型
12
作者 史宗帅 亚森江·加入拉 +1 位作者 崔鹏飞 靳鹏飞 《机电工程》 北大核心 2025年第3期463-471,500,共10页
针对有噪声环境下轴承转子系统的故障特征难以有效提取,且转子系统故障诊断的准确率较低的问题,提出了一种基于Levy飞行策略改进的麻雀搜索算法(LSSA)优化支持向量机(SVM),结合主成分分析(PCA)特征降维的转子故障诊断方法(模型)。首先,... 针对有噪声环境下轴承转子系统的故障特征难以有效提取,且转子系统故障诊断的准确率较低的问题,提出了一种基于Levy飞行策略改进的麻雀搜索算法(LSSA)优化支持向量机(SVM),结合主成分分析(PCA)特征降维的转子故障诊断方法(模型)。首先,采用小波分析技术对原始的转子振动信号进行了去噪处理,通过提取信号的时域特征以精确表征不同的转子故障状态,确保了该特征在噪声干扰下仍能清晰反映故障模式;然后,采用PCA对所提取的高维特征进行了降维处理,有效减少了冗余信息和噪声干扰,保留了最具代表性的关键特征,从而提高了特征提取的效率与诊断的可靠性;最后,设计了Levy飞行策略,对SSA进行了改进,得到了改进后的麻雀搜索算法(LSSA),以优化SVM的参数选择,进一步提升了分类器的泛化能力,利用改进的算法增强了该模型在复杂、有噪声环境下的诊断性能。研究结果表明:通过在多个含噪声的转子故障数据集上进行实验,该方法的故障诊断准确率达到了98.5%,相较于传统诊断方法,其具有更强的鲁棒性和较高的诊断精度,特别是在有噪环境中的优势更为明显。该方法有效解决了噪声干扰对故障诊断精度的影响问题,显著提高了转子故障诊断的准确性和稳定性,为实际工程中的转子故障诊断提供了一种有效的解决方案。 展开更多
关键词 轴承故障诊断 莱维飞行 改进的麻雀搜索算法 支持向量机 主成分分析 主成分分析特征降维 小波阈值函数去噪
在线阅读 下载PDF
基于改进LSTM-SVM的双向DC-DC电力变换器故障诊断 被引量:4
13
作者 王福忠 任淯琳 +1 位作者 张丽 王丹 《河南理工大学学报(自然科学版)》 CAS 北大核心 2024年第5期118-126,共9页
目的为了解决双向DC-DC电力变换器的软故障诊断精度不高的问题,方法提出基于改进LSTM-SVM的双向DC-DC电力变换器故障诊断模型。首先,分析双向DC-DC电力变换器中电容、电感和MOSFET管的故障机理,通过仿真实验模拟各元件失效后变换器的输... 目的为了解决双向DC-DC电力变换器的软故障诊断精度不高的问题,方法提出基于改进LSTM-SVM的双向DC-DC电力变换器故障诊断模型。首先,分析双向DC-DC电力变换器中电容、电感和MOSFET管的故障机理,通过仿真实验模拟各元件失效后变换器的输出电气参数变化,从而确定变换器不同元件故障时对应的故障特征参数;其次,构建改进的LSTM-SVM双向DC-DC电力变换器故障诊断组合模型,在LSTM中添加Mogrifier门机制,提高LSTM提取时间序列原始数据中微弱特征的能力;最后,由于传统LSTM的末端分类器为Softmax,其主要解决单一元件诊断问题,变换器故障类型较多,维数较高,所以采用麻雀搜索算法优化的SVM代替原有的Softmax函数,对LSTM输出的数据进行故障分类,提高故障诊断的准确率。设置双向DC-DC电力变换器充放电两种状态下,包含电解电容、电感和MOSFET单双管故障在内的24组故障,分别采用本文构建的改进的LSTM-SVM和原始的LSTM-SVM双向DC-DC变换器故障诊断模型进行诊断。结果结果表明,改进的LSTM-SVM故障诊断模型诊断准确率平均值为99.71%,原始的LSTM-SVM故障诊断模型诊断准确率平均值为88.48%,改进的LSTM-SVM故障诊断模型对各元件的故障诊断正确率均高于原始的LSTM-SVM故障诊断模型的。结论基于改进LSTM-SVM的双向DC-DC电力变换器故障诊断模型实现了对双向DC-DC电力变换器中的电解电容、电感和MOSFET单双管故障的准确诊断。 展开更多
关键词 双向DC-DC变换器 软故障 改进长短期记忆网络 麻雀搜索 支持向量机 故障诊断
在线阅读 下载PDF
基于EEMD-IGWO-SVM的电机轴承故障诊断 被引量:5
14
作者 张涛 杨旭 +3 位作者 李玉梅 郭鹤 石广远 陈学勇 《机床与液压》 北大核心 2024年第10期174-181,共8页
针对电机轴承易发生损坏、传统诊断方法耗时长且准确度低等问题,提出一种基于改进灰狼优化算法(IGWO)优化支持向量机(SVM)的电机轴承故障诊断方法。对电机振动数据进行集成经验模态分解(EEMD),提取出IMF能量矩作为特征向量,并结合IGWO-... 针对电机轴承易发生损坏、传统诊断方法耗时长且准确度低等问题,提出一种基于改进灰狼优化算法(IGWO)优化支持向量机(SVM)的电机轴承故障诊断方法。对电机振动数据进行集成经验模态分解(EEMD),提取出IMF能量矩作为特征向量,并结合IGWO-SVM分类器,构造电机轴承故障检测模型。在模型引入改进Tent混沌映射、非线性收敛因子、动态权重策略,得到改进的分类算法,该算法可以快速精准地寻找SVM的最优惩罚参数C和核参数γ。对电机轴承振动数据进行仿真实验,诊断结果表明该轴承故障方法平均准确率高达99.4%。最后通过实验验证提出的诊断方法具有良好的算法稳定性和抗噪性能,可有效提高故障诊断精度。 展开更多
关键词 电机 故障诊断 支持向量机 改进灰狼优化算法
在线阅读 下载PDF
基于改进SKNet-SVM的网络安全态势评估 被引量:6
15
作者 赵冬梅 孙明伟 +1 位作者 宿梦月 吴亚星 《应用科学学报》 CAS CSCD 北大核心 2024年第2期334-349,共16页
为提高网络安全态势评估的准确率,增强稳定性与鲁棒性,提出一种基于改进选择性卷积核卷积神经网络和支持向量机的网络安全态势评估模型。首先,使用改进选择性卷积核代替传统卷积核进行特征提取,提高卷积神经网络感受野变化的自适应性,... 为提高网络安全态势评估的准确率,增强稳定性与鲁棒性,提出一种基于改进选择性卷积核卷积神经网络和支持向量机的网络安全态势评估模型。首先,使用改进选择性卷积核代替传统卷积核进行特征提取,提高卷积神经网络感受野变化的自适应性,增强特征之间关联性。然后,将提取的特征输入到支持向量机中进行分类,并使用网格优化算法对支持向量机中的参数进行全局寻优。最后,根据网络攻击影响指标计算网络安全态势值。实验表明,基于改进选择性卷积核卷积神经网络和支持向量机的态势评估模型与传统的卷积神经网络搭建的态势评估模型相比,准确率更高,并且具有更强的稳定性和鲁棒性。 展开更多
关键词 网络安全态势评估 网络安全态势感知 改进选择性卷积核卷积神经网络 支持向量机 网格优化算法
在线阅读 下载PDF
采用改进遗传算法优化LS-SVM逆系统的外转子无铁心无轴承永磁同步发电机解耦控制 被引量:7
16
作者 朱熀秋 沈良瑜 《中国电机工程学报》 EI CSCD 北大核心 2024年第5期2037-2046,I0032,共11页
为了实现外转子无铁心无轴承永磁同步发电机(outer rotor coreless bearingless permanent magnet synchronous generator,ORC-BPMSG)的精确控制,提出一种基于改进遗传算法(improved genetic algorithm,IGA)优化最小二乘支持向量机(leas... 为了实现外转子无铁心无轴承永磁同步发电机(outer rotor coreless bearingless permanent magnet synchronous generator,ORC-BPMSG)的精确控制,提出一种基于改进遗传算法(improved genetic algorithm,IGA)优化最小二乘支持向量机(least square support vector machine,LS-SVM)逆系统的解耦控制策略。首先,基于ORC-BPMSG的结构及工作原理,推导其数学模型,并分析其可逆性。其次,建立LS-SVM回归方程,并采用IGA优化LS-SVM的性能参数,从而训练得到逆系统。然后,将逆系统与原系统串接,形成伪线性系统,实现了ORC-BPMSG的线性化和解耦。最后,将提出的控制方法与传统LS-SVM逆系统控制方法进行对比仿真和实验。仿真和实验结果表明:所提出的控制策略可以较好地实现ORC-BPMSG输出电压和悬浮力、以及悬浮力之间的解耦控制。 展开更多
关键词 外转子无铁心无轴承永磁同步发电机 最小二乘支持向量机 逆系统 改进遗传算法 解耦控制
在线阅读 下载PDF
基于特征选择和ICOA-LSSVM的变压器故障诊断 被引量:3
17
作者 向小民 盛刘宇 +1 位作者 刘谦 刘闯 《电气工程学报》 CSCD 北大核心 2024年第4期397-406,共10页
为提高变压器故障诊断的准确率,提出一种基于特征选择和改进黑猩猩算法(Improved chimp optimization algorithm,ICOA)优化最小二乘支持向量机(Least squares support vector machine,LSSVM)的变压器故障诊断方法。采用F-score和信息增... 为提高变压器故障诊断的准确率,提出一种基于特征选择和改进黑猩猩算法(Improved chimp optimization algorithm,ICOA)优化最小二乘支持向量机(Least squares support vector machine,LSSVM)的变压器故障诊断方法。采用F-score和信息增益两种方法对故障特征进行筛选,根据特征选择结果确定变压器故障诊断模型的输入量。采用ICOA算法对LSSVM的惩罚因子和核参数进行优化,建立了基于特征选择和ICOA-LSSVM的变压器故障诊断模型。采用实际变压器故障数据进行算例分析,并与其他变压器故障诊断方法进行对比,结果表明,考虑特征选择的ICOA-LSSVM模型诊断结果的正确率高达95.83%,高于其他方法,验证了所提变压器故障诊断方法的正确性和优越性。 展开更多
关键词 变压器 故障诊断 改进黑猩猩算法 最小二乘支持向量机 特征选择
在线阅读 下载PDF
基于ISSA-HKLSSVM的浮选精矿品位预测方法 被引量:1
18
作者 高云鹏 罗芸 +2 位作者 孟茹 张微 赵海利 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第2期111-120,共10页
针对浮选过程变量滞后、耦合特征及建模样本数量少所导致精矿品位难以准确预测的问题,提出了一种基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混核最小二乘支持向量机(Hybrid Kernel Least Squares Support Vecto... 针对浮选过程变量滞后、耦合特征及建模样本数量少所导致精矿品位难以准确预测的问题,提出了一种基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混核最小二乘支持向量机(Hybrid Kernel Least Squares Support Vector Machine,HKLSSVM)的浮选过程精矿品位预测方法.首先采集浮选现场载流X荧光品位分析仪数据作为建模变量并进行预处理,建立基于最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)的预测模型,以此构建新型混合核函数,将输入空间映射至高维特征空间,再引入改进麻雀搜索算法对模型参数进行优化,提出基于ISSA-HKLSSVM方法实现精矿品位预测,最后开发基于LabVIEW的浮选精矿品位预测系统对本文提出方法实际验证.实验结果表明,本文提出方法对于浮选过程小样本建模具有良好拟合能力,相比现有方法提高了预测准确率,可实现精矿品位的准确在线预测,为浮选过程的智能调控提供实时可靠的精矿品位反馈信息. 展开更多
关键词 浮选 精矿品位 最小二乘支持向量机 改进麻雀搜索算法 预测模型
在线阅读 下载PDF
基于IPOA-LSSVM模型的高压直流输电线路故障定位 被引量:1
19
作者 商立群 刘晗 +3 位作者 郝天奇 李钊 李朝彪 邓力文 《南京信息工程大学学报》 CAS 北大核心 2024年第5期667-677,共11页
故障定位在长距离高压直流输电系统中起着至关重要的作用.针对线路衰减系数计算不准和二次波头难以捕捉的问题,提出了一种改进鹈鹕优化算法(IPOA)优化最小二乘支持向量(LSSVM)的故障定位模型.根据行波衰减原理,推导故障距离和线路两端... 故障定位在长距离高压直流输电系统中起着至关重要的作用.针对线路衰减系数计算不准和二次波头难以捕捉的问题,提出了一种改进鹈鹕优化算法(IPOA)优化最小二乘支持向量(LSSVM)的故障定位模型.根据行波衰减原理,推导故障距离和线路两端线模分量模极大值比的计算公式,发现二者具有非线性关系.使用LSSVM泛化二者之间的关系,将改进后的POA算法对LSSVM的关键参数进行寻优,建立IPOA-LSSVM故障定位模型.通过在两端采集故障信号,对其进行小波变换得到首波头幅值比作为模型的输入量,故障距离作为输出量进行仿真验证.仿真结果表明,该模型不受过渡电阻和故障类型的影响,能够可靠准确地定位. 展开更多
关键词 故障定位 高压直流输电系统 首波头幅值比 改进鹈鹕优化算法 最小二乘支持向量机
在线阅读 下载PDF
参数优化的IZOA-SVM机械设备故障诊断方法
20
作者 赵月静 邢天祥 秦志英 《机电工程》 CAS 北大核心 2024年第10期1894-1902,共9页
在复杂的工作环境中,机械设备振动信号的复杂性常常会导致机械设备故障诊断的准确性不高,为解决设备运行中因信号复杂性引发的故障诊断难题,提出了一种参数优化的斑马优化算法优化支持向量机(IZOA-SVM)的故障诊断方法。首先,引入了柯西... 在复杂的工作环境中,机械设备振动信号的复杂性常常会导致机械设备故障诊断的准确性不高,为解决设备运行中因信号复杂性引发的故障诊断难题,提出了一种参数优化的斑马优化算法优化支持向量机(IZOA-SVM)的故障诊断方法。首先,引入了柯西变异和反向学习的改进策略到斑马优化算法(ZOA)中,提出了改进的斑马优化算法(IZOA),旨在改善原有斑马优化算法在迭代后期容易陷入局部极值等问题,从而有效增强了其全局搜索能力;其次,利用IZOA优化支持向量机(SVM)的核参数g和惩罚参数c以寻找SVM最优参数组合[c,g],并构建了IZOA-SVM模型;然后,计算了样本的13个时域特征以构成特征向量,并将特征向量分别输入到IZOA-SVM模型、斑马优化算法优化支持向量机(ZOA-SVM)模型、粒子群算法优化支持向量机(PSO-SVM)模型、遗传算法优化支持向量机(GA-SVM)模型和支持向量机模型,进行了故障分类;最后,通过旋转机械振动及故障模拟试验验证了该方法的有效性。研究结果表明:IZOA-SVM模型在分类准确率方面得到了明显的提高,达到了98.33%;该模型能够精准而稳定地识别故障类型,提高故障识别的准确性,在准确率方面相较于其他对比方法表现出更为显著的优势。因此,该方法在全局搜索和故障分类准确性方面都取得了明显的改进,为复杂环境下的故障诊断提供了可参考的解决方案。 展开更多
关键词 机械设备 旋转机械 故障诊断 改进斑马优化算法 柯西变异 反向学习 支持向量机
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部