A new technology for the crystallization of ammonium paratungstate with coarse grain has beenstudied. The factors influencing the physi-chemical properties of ammonium paratungstate crystal, such astemperature, concen...A new technology for the crystallization of ammonium paratungstate with coarse grain has beenstudied. The factors influencing the physi-chemical properties of ammonium paratungstate crystal, such astemperature, concentration, seed crystal, agitation. etc. were examined. It is necessary to keep high temperature and low concentration in the process. and the addition of seed crystal and agitation with air is also in favor of the system. Ammonium paratungstate crystal with particle size of 36-42 μm and apparent density of2. 0-2. 2 g·cm- 3 were obtained by controlling suitable technological parameters.展开更多
The single crystal of nickel-base super alloy is widely used for making turbine blades.The microstructure of the alloy,especially the deviation of preferred orientation of single crystal,possesses the most important e...The single crystal of nickel-base super alloy is widely used for making turbine blades.The microstructure of the alloy,especially the deviation of preferred orientation of single crystal,possesses the most important effects on the mechanical properties of the blades.In this study,the single crystal ingot and blade of DZ417G alloy are prepared by means of the spiral crystal selector as well as the directional solidification method,and the effect of the parameters(i.e.,the shape of samples,the withdrawal rate)and the structure of the spiral crystal selector on the formation of single crystal and the crystal orientation are investigated.This method can prepare not only the single crystal ingot with simple shape but also the single crystal blades with the complex shape,the simple with rod-shape can form the single crystal easily with a relatively fast withdrawal rate,but the blade with complex shape requires much slower withdrawal rate to form single crystal.The length of the crystal selector almost has no effect on the crystal orientation.However,the angle of selector plays an obvious role on the orientation;the selector with a smaller angle can effectively reduce the deviation of preferred orientation;the appropriate angle of selector to obtain optimal orientation is found to be around30°and the deviation of preferred orientation is about30°for this selector.展开更多
A rate dependent crystal plasticity constitutive model considering self and latent hardening in finite element analysis was developed to simulate rolling textures of pure aluminum. By changing the assignment of orient...A rate dependent crystal plasticity constitutive model considering self and latent hardening in finite element analysis was developed to simulate rolling textures of pure aluminum. By changing the assignment of orientations to finite elements, i.e. assigning the same set of orientations to all elements or different orientations to different elements, the influences of grain interaction on the formation of rolling textures were numerically simulated with this kind of crystal plasticity finite element model. The simulation results reveal that the grains without considering grain interaction rotate faster than those considering grain interaction, and the rotation of grain boundary is slowed down due to the grain interaction. For a good simulation more elements should be assigned to one grain, in which the effects of both the boundary and interior parts of grain contribute to the formation of rolling textures.展开更多
文摘A new technology for the crystallization of ammonium paratungstate with coarse grain has beenstudied. The factors influencing the physi-chemical properties of ammonium paratungstate crystal, such astemperature, concentration, seed crystal, agitation. etc. were examined. It is necessary to keep high temperature and low concentration in the process. and the addition of seed crystal and agitation with air is also in favor of the system. Ammonium paratungstate crystal with particle size of 36-42 μm and apparent density of2. 0-2. 2 g·cm- 3 were obtained by controlling suitable technological parameters.
基金Project(51074105)supported by the National Natural Science Foundation of ChinaProjects(08DZ1130100,10520706400)supported by the Science and Technology Commission of Shanghai Municipality,ChinaProject(2007CB613606)supported by the National Basic Research Program of China
文摘The single crystal of nickel-base super alloy is widely used for making turbine blades.The microstructure of the alloy,especially the deviation of preferred orientation of single crystal,possesses the most important effects on the mechanical properties of the blades.In this study,the single crystal ingot and blade of DZ417G alloy are prepared by means of the spiral crystal selector as well as the directional solidification method,and the effect of the parameters(i.e.,the shape of samples,the withdrawal rate)and the structure of the spiral crystal selector on the formation of single crystal and the crystal orientation are investigated.This method can prepare not only the single crystal ingot with simple shape but also the single crystal blades with the complex shape,the simple with rod-shape can form the single crystal easily with a relatively fast withdrawal rate,but the blade with complex shape requires much slower withdrawal rate to form single crystal.The length of the crystal selector almost has no effect on the crystal orientation.However,the angle of selector plays an obvious role on the orientation;the selector with a smaller angle can effectively reduce the deviation of preferred orientation;the appropriate angle of selector to obtain optimal orientation is found to be around30°and the deviation of preferred orientation is about30°for this selector.
基金Projects(50230310 ,50301016) supported by the National Natural Science Foundation of China project(2004053304)supported by the Doctor Program Foundation of the Ministry of Education of China project(2005CB623706) supported by the State KeyFundamental Research and Development Programof China
文摘A rate dependent crystal plasticity constitutive model considering self and latent hardening in finite element analysis was developed to simulate rolling textures of pure aluminum. By changing the assignment of orientations to finite elements, i.e. assigning the same set of orientations to all elements or different orientations to different elements, the influences of grain interaction on the formation of rolling textures were numerically simulated with this kind of crystal plasticity finite element model. The simulation results reveal that the grains without considering grain interaction rotate faster than those considering grain interaction, and the rotation of grain boundary is slowed down due to the grain interaction. For a good simulation more elements should be assigned to one grain, in which the effects of both the boundary and interior parts of grain contribute to the formation of rolling textures.