单元测试用于检验软件单一模块的功能是否正确,是软件开发过程中的重要步骤,可以及时发现代码中的缺陷,提升软件的质量和可信度.由于手动编写单元测试费时费力,经常遗漏覆盖重要的代码逻辑.为此,研究者提出单元测试用例自动生成技术.近...单元测试用于检验软件单一模块的功能是否正确,是软件开发过程中的重要步骤,可以及时发现代码中的缺陷,提升软件的质量和可信度.由于手动编写单元测试费时费力,经常遗漏覆盖重要的代码逻辑.为此,研究者提出单元测试用例自动生成技术.近来,预训练大语言模型(large language models,LLM)已经广泛应用于代码生成相关任务.然而,当前在重要的系统级编程语言C上,还没有相关工作.为了填补这一空白,本文面向C程序设计并实现了基于LLM的单元测试用例生成方法LLM4CUTCG.该方法结合LLM多智能体交互和程序分析技术,客服了LLM内在问题.为了验证方法效果,收集了125个C语言目标程序,并针对这些程序生成测试用例.实验结果表明,LLM4CUTCG生成的测试行覆盖率为91.71%,测试预言正确率为50.05%.其覆盖率优于传统方法符号执行.展开更多
软件系统在各行各业中发挥着不可忽视的作用,承载着大规模、高密度的数据,但软件系统中存在的种种缺陷一直以来困扰着系统的开发者,时刻威胁着系统数据要素的安全.自动代码修复(automated program repair,APR)技术旨在帮助开发者在软件...软件系统在各行各业中发挥着不可忽视的作用,承载着大规模、高密度的数据,但软件系统中存在的种种缺陷一直以来困扰着系统的开发者,时刻威胁着系统数据要素的安全.自动代码修复(automated program repair,APR)技术旨在帮助开发者在软件系统的开发过程中自动地修复代码中存在的缺陷,节约软件系统开发和维护成本,提高软件系统中数据要素的保密性、可用性和完整性.随着大语言模型(large language model,LLM)技术的发展,涌现出许多能力强大的代码大语言模型,并且代码LLM在APR领域的应用中表现出了强大的修复能力,弥补了传统方案对于代码理解能力、补丁生成能力方面的不足,进一步提高了代码修复工具的水平.全面调研分析了近年APR相关的高水平论文,总结了APR领域的最新发展,系统归纳了完形填空模式和神经机器翻译模式2类基于LLM的APR技术,并从模型类型、模型规模、修复的缺陷类型、修复的编程语言和修复方案优缺点等角度进行全方位的对比与研讨.同时,对APR数据集和评价APR修复能力的指标进行了梳理和分析,并且对现有的实证研究展开深入探讨.最后,分析了当前APR领域存在的挑战及未来的研究方向.展开更多
基于数据驱动的单元测试代码自动化生成技术存在覆盖率低和可读性差的问题,难以应对日益增长的测试需求。大语言模型(LLM)在代码生成任务中显示了极大的潜力,然而由于代码数据的功能风格和编码风格的差异,LLM面临灾难性遗忘和资源受限这...基于数据驱动的单元测试代码自动化生成技术存在覆盖率低和可读性差的问题,难以应对日益增长的测试需求。大语言模型(LLM)在代码生成任务中显示了极大的潜力,然而由于代码数据的功能风格和编码风格的差异,LLM面临灾难性遗忘和资源受限这2个挑战。为了解决这些问题,提出将编码风格和功能风格同步迁移微调的思想,并开发一种高效的LLM微调训练方法用于单元测试用例生成。首先,利用广泛使用的指令数据集对LLM进行指令对齐,并按任务类型对指令集分类;同时,提取并存储具有任务特征的权重增量;其次,设计一个自适应风格提取模块,该模块包含抗噪声干扰学习和编码风格回溯学习,以应对不同的代码编写风格;最后,在目标域分别对功能风格增量和编码风格增量进行联合训练,以实现在目标域低资源情况下的高效适配和微调。在SF110 Corpus of Classes数据集上的测试用例生成实验结果表明,所提方法的结果均优于对比方法,与主流代码生成LLM Codex、Code Llama和DeepSeek-Coder相比,所提方法的编译率分别提高0.8%、43.5%和33.8%、分支覆盖率分别提高3.1%、1.0%和17.2%;行覆盖率分别提高4.1%、6.5%和15.5%,验证了所提方法在代码生成任务上的优越性。展开更多
文摘单元测试用于检验软件单一模块的功能是否正确,是软件开发过程中的重要步骤,可以及时发现代码中的缺陷,提升软件的质量和可信度.由于手动编写单元测试费时费力,经常遗漏覆盖重要的代码逻辑.为此,研究者提出单元测试用例自动生成技术.近来,预训练大语言模型(large language models,LLM)已经广泛应用于代码生成相关任务.然而,当前在重要的系统级编程语言C上,还没有相关工作.为了填补这一空白,本文面向C程序设计并实现了基于LLM的单元测试用例生成方法LLM4CUTCG.该方法结合LLM多智能体交互和程序分析技术,客服了LLM内在问题.为了验证方法效果,收集了125个C语言目标程序,并针对这些程序生成测试用例.实验结果表明,LLM4CUTCG生成的测试行覆盖率为91.71%,测试预言正确率为50.05%.其覆盖率优于传统方法符号执行.
文摘软件系统在各行各业中发挥着不可忽视的作用,承载着大规模、高密度的数据,但软件系统中存在的种种缺陷一直以来困扰着系统的开发者,时刻威胁着系统数据要素的安全.自动代码修复(automated program repair,APR)技术旨在帮助开发者在软件系统的开发过程中自动地修复代码中存在的缺陷,节约软件系统开发和维护成本,提高软件系统中数据要素的保密性、可用性和完整性.随着大语言模型(large language model,LLM)技术的发展,涌现出许多能力强大的代码大语言模型,并且代码LLM在APR领域的应用中表现出了强大的修复能力,弥补了传统方案对于代码理解能力、补丁生成能力方面的不足,进一步提高了代码修复工具的水平.全面调研分析了近年APR相关的高水平论文,总结了APR领域的最新发展,系统归纳了完形填空模式和神经机器翻译模式2类基于LLM的APR技术,并从模型类型、模型规模、修复的缺陷类型、修复的编程语言和修复方案优缺点等角度进行全方位的对比与研讨.同时,对APR数据集和评价APR修复能力的指标进行了梳理和分析,并且对现有的实证研究展开深入探讨.最后,分析了当前APR领域存在的挑战及未来的研究方向.
文摘基于数据驱动的单元测试代码自动化生成技术存在覆盖率低和可读性差的问题,难以应对日益增长的测试需求。大语言模型(LLM)在代码生成任务中显示了极大的潜力,然而由于代码数据的功能风格和编码风格的差异,LLM面临灾难性遗忘和资源受限这2个挑战。为了解决这些问题,提出将编码风格和功能风格同步迁移微调的思想,并开发一种高效的LLM微调训练方法用于单元测试用例生成。首先,利用广泛使用的指令数据集对LLM进行指令对齐,并按任务类型对指令集分类;同时,提取并存储具有任务特征的权重增量;其次,设计一个自适应风格提取模块,该模块包含抗噪声干扰学习和编码风格回溯学习,以应对不同的代码编写风格;最后,在目标域分别对功能风格增量和编码风格增量进行联合训练,以实现在目标域低资源情况下的高效适配和微调。在SF110 Corpus of Classes数据集上的测试用例生成实验结果表明,所提方法的结果均优于对比方法,与主流代码生成LLM Codex、Code Llama和DeepSeek-Coder相比,所提方法的编译率分别提高0.8%、43.5%和33.8%、分支覆盖率分别提高3.1%、1.0%和17.2%;行覆盖率分别提高4.1%、6.5%和15.5%,验证了所提方法在代码生成任务上的优越性。