A high-speed train travelling from the open air into a narrow tunnel will cause the“sonic boom”at tunnel exit.When the maglev train’s speed reaches 600 km/h,the train-tunnel aerodynamic effect is intensified,so a n...A high-speed train travelling from the open air into a narrow tunnel will cause the“sonic boom”at tunnel exit.When the maglev train’s speed reaches 600 km/h,the train-tunnel aerodynamic effect is intensified,so a new mitigation method is urgently expected to be explored.This study proposed a novel asymptotic linear method(ALM)for micro pressure wave(MPW)mitigation to achieve a constant gradient of initial c ompression waves(ICWs),via a study with various open ratios on hoods.The properties of ICWs and MPWs under various open ratios of hoods were analyzed.The results show that as the open ratio increases,the MPW amplitude at the tunnel exit initially decreases before rising.At the open ratio of 2.28%,the slope of the ICW curve is linearly coincident with a supposed straight line in the ALM,which further reduces the MPW amplitude by 26.9%at 20 m and 20.0%at 50 m from the exit,as compared to the unvented hood.Therefore,the proposed method effectively mitigates MPW and quickly determines the upper limit of alleviation for the MPW amplitude at a fixed train-tunnel operation condition.All achievements provide a ne w potential measure for the adaptive design of tunnel hoods.展开更多
An improved design method of pervious concrete was proposed to lower the deviation between the designed and actual porosity and maintain both mechanical property and permeability of pervious concrete. The improved des...An improved design method of pervious concrete was proposed to lower the deviation between the designed and actual porosity and maintain both mechanical property and permeability of pervious concrete. The improved design method is mainly based on the optimal volume ratio of paste to aggregate(VRPA), which was determined by testing the average thickness of cement paste coating aggregate. The performances of pervious concrete designed by the traditional method and the improved one were compared. The results show that with the increase of designed porosity, the reduction of compressive strength and flexural strength of pervious concrete designed by the improved method is significantly smaller than those designed by the traditional one. The maximum deviation between the designed and actual porosity of the pervious concrete by the improved method is only 1.54%, which is far less than 8.7% obtained by the traditional one. Micro-structural analysis shows that the porous distribution of pervious concrete designed by improved method exhibits better uniformity.展开更多
An extended compromise ratio method(CRM) based on fuzzy distances is developed to solve fuzzy multi-attribute group decision making problems in which weights of attributes and ratings of alternatives on attributes a...An extended compromise ratio method(CRM) based on fuzzy distances is developed to solve fuzzy multi-attribute group decision making problems in which weights of attributes and ratings of alternatives on attributes are expressed with values of linguistic variables parameterized using triangular fuzzy numbers.A compromise solution is determined by introducing the ranking index based on the concept that the chosen alternative should be as close as possible to the positive ideal solution and as far away from the negative ideal solution as possible simultaneously.This proposed method is compared with other existing methods to show its feasibility and effectiveness and illustrated with an example of the military route selection problem as one of the possible applications.展开更多
The calculation method of sliding ratios for conjugate-curve gear pair, generated based on the theory of conjugate curves,is proposed. The theoretical model of conjugate-curve gear drive is briefly introduced. The gen...The calculation method of sliding ratios for conjugate-curve gear pair, generated based on the theory of conjugate curves,is proposed. The theoretical model of conjugate-curve gear drive is briefly introduced. The general calculation formulas of sliding ratios are developed according to the conjugate curves. The applications to the circular arc gears based on conjugate curves and the novel involute-helix gears are studied. A comparison on the sliding coefficient with the conventional corresponding gear drive is also carried out. The influences of gear parameters such as spiral parameter, gear ratio and modulus on the sliding ratios of gear drive are discussed. Brief description of manufacturing method for conjugate-curve gear pair is given. The research results show that the sliding ratios of gear pair become smaller with the increase of spiral parameter and gear ratio, respectively. And it will be greater with the increase of modulus for the tooth profiles. The meshing characteristics of conjugate-curve gears are further reflected and the optimization design of tooth profiles with high performance may be obtained.展开更多
Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting m...Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting mode could achieve high yield,fiber quality and water use efficiency(WUE).This study aimed to explore if chemical topping affected cotton yield,quality and water use in relation to row configuration and plant densities.Results Experiments were carried out in Xinjiang China,in 2020 and 2021 with two topping method,manual topping and chemical topping,two plant densities,low and high,and two row configurations,i.e.,76 cm equal rows and 10+66 cm narrow-wide rows,which were commonly applied in matching harvest machine.Chemical topping increased seed cotton yield,but did not affect cotton fiber quality comparing to traditional manual topping.Under equal row spacing,the WUE in higher density was 62.4%higher than in the lower one.However,under narrow-wide row spacing,the WUE in lower density was 53.3%higher than in higher one(farmers’practice).For machine-harvest cotton in Xinjiang,the optimal row configuration and plant density for chemical topping was narrow-wide rows with 15 plants m-2 or equal rows with 18 plants m-2.Conclusion The plant density recommended in narrow-wide rows was less than farmers’practice and the density in equal rows was moderate with local practice.Our results provide new knowledge on optimizing agronomic managements of machine-harvested cotton for both high yield and water efficient.展开更多
基金Project(24A0006)supported by the Key Project of Scientific Research Fund of Hunan Provincial Department of Education,ChinaProject(2024JJ5430)supported by the Natural Science Foundation of Hunan Province,ChinaProjects(2024JK2045,2023RC3061)supported by the Science and Technology Innovation Program of Hunan Province,China。
文摘A high-speed train travelling from the open air into a narrow tunnel will cause the“sonic boom”at tunnel exit.When the maglev train’s speed reaches 600 km/h,the train-tunnel aerodynamic effect is intensified,so a new mitigation method is urgently expected to be explored.This study proposed a novel asymptotic linear method(ALM)for micro pressure wave(MPW)mitigation to achieve a constant gradient of initial c ompression waves(ICWs),via a study with various open ratios on hoods.The properties of ICWs and MPWs under various open ratios of hoods were analyzed.The results show that as the open ratio increases,the MPW amplitude at the tunnel exit initially decreases before rising.At the open ratio of 2.28%,the slope of the ICW curve is linearly coincident with a supposed straight line in the ALM,which further reduces the MPW amplitude by 26.9%at 20 m and 20.0%at 50 m from the exit,as compared to the unvented hood.Therefore,the proposed method effectively mitigates MPW and quickly determines the upper limit of alleviation for the MPW amplitude at a fixed train-tunnel operation condition.All achievements provide a ne w potential measure for the adaptive design of tunnel hoods.
基金Projects(51978346,51778302)supported by the National Natural Science Foundation of ChinaProject(202002N3117)supported by the Ningbo Science and Technology Project,China。
文摘An improved design method of pervious concrete was proposed to lower the deviation between the designed and actual porosity and maintain both mechanical property and permeability of pervious concrete. The improved design method is mainly based on the optimal volume ratio of paste to aggregate(VRPA), which was determined by testing the average thickness of cement paste coating aggregate. The performances of pervious concrete designed by the traditional method and the improved one were compared. The results show that with the increase of designed porosity, the reduction of compressive strength and flexural strength of pervious concrete designed by the improved method is significantly smaller than those designed by the traditional one. The maximum deviation between the designed and actual porosity of the pervious concrete by the improved method is only 1.54%, which is far less than 8.7% obtained by the traditional one. Micro-structural analysis shows that the porous distribution of pervious concrete designed by improved method exhibits better uniformity.
基金supported by the National Natural Science Foundation of China (7087111770571086)
文摘An extended compromise ratio method(CRM) based on fuzzy distances is developed to solve fuzzy multi-attribute group decision making problems in which weights of attributes and ratings of alternatives on attributes are expressed with values of linguistic variables parameterized using triangular fuzzy numbers.A compromise solution is determined by introducing the ranking index based on the concept that the chosen alternative should be as close as possible to the positive ideal solution and as far away from the negative ideal solution as possible simultaneously.This proposed method is compared with other existing methods to show its feasibility and effectiveness and illustrated with an example of the military route selection problem as one of the possible applications.
基金Project(2013BAF01B04) supported by the National Key Technology R&D Program during the Twelfth Five-year Plan of ChinaProject(51205425) supported by the National Natural Science Foundation of China
文摘The calculation method of sliding ratios for conjugate-curve gear pair, generated based on the theory of conjugate curves,is proposed. The theoretical model of conjugate-curve gear drive is briefly introduced. The general calculation formulas of sliding ratios are developed according to the conjugate curves. The applications to the circular arc gears based on conjugate curves and the novel involute-helix gears are studied. A comparison on the sliding coefficient with the conventional corresponding gear drive is also carried out. The influences of gear parameters such as spiral parameter, gear ratio and modulus on the sliding ratios of gear drive are discussed. Brief description of manufacturing method for conjugate-curve gear pair is given. The research results show that the sliding ratios of gear pair become smaller with the increase of spiral parameter and gear ratio, respectively. And it will be greater with the increase of modulus for the tooth profiles. The meshing characteristics of conjugate-curve gears are further reflected and the optimization design of tooth profiles with high performance may be obtained.
基金Key Research and Development Program of Xinjiang(2022B02001-1)National Natural Science Foundation of China(42105172,41975146).
文摘Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting mode could achieve high yield,fiber quality and water use efficiency(WUE).This study aimed to explore if chemical topping affected cotton yield,quality and water use in relation to row configuration and plant densities.Results Experiments were carried out in Xinjiang China,in 2020 and 2021 with two topping method,manual topping and chemical topping,two plant densities,low and high,and two row configurations,i.e.,76 cm equal rows and 10+66 cm narrow-wide rows,which were commonly applied in matching harvest machine.Chemical topping increased seed cotton yield,but did not affect cotton fiber quality comparing to traditional manual topping.Under equal row spacing,the WUE in higher density was 62.4%higher than in the lower one.However,under narrow-wide row spacing,the WUE in lower density was 53.3%higher than in higher one(farmers’practice).For machine-harvest cotton in Xinjiang,the optimal row configuration and plant density for chemical topping was narrow-wide rows with 15 plants m-2 or equal rows with 18 plants m-2.Conclusion The plant density recommended in narrow-wide rows was less than farmers’practice and the density in equal rows was moderate with local practice.Our results provide new knowledge on optimizing agronomic managements of machine-harvested cotton for both high yield and water efficient.