To improve the nonlinear approximating ability of cerebellar model articulation controller(CMAC), by introducing the Gauss basis functions and the similarity measure based addressing scheme, a new kind of fuzzy CMAC...To improve the nonlinear approximating ability of cerebellar model articulation controller(CMAC), by introducing the Gauss basis functions and the similarity measure based addressing scheme, a new kind of fuzzy CMAC with Gauss basis functions(GFCMAC) was presented. Moreover, based upon the improvement of the self organizing feature map algorithm of Kohonen, the structural self organizing algorithm for GFCMAC(SOGFCMAC) was proposed. Simulation results show that adopting the Gauss basis functions and fuzzy techniques can remarkably improve the nonlinear approximating capacity of CMAC. Compared with the traditional CMAC,CMAC with general basis functions and fuzzy CMAC(FCMAC), SOGFCMAC has the obvious advantages in the aspects of the convergent speed, approximating accuracy and structural self organizing.展开更多
针对低空四旋翼无人机系统具有不确定性的控制特点,设计了一种小脑模型关节控制器(cerebellar model articulation controller,CMAC)神经网络与模糊PID控制器复合的控制方案,将其应用于四旋翼无人机系统的姿态跟踪设计中,并与模糊PID控...针对低空四旋翼无人机系统具有不确定性的控制特点,设计了一种小脑模型关节控制器(cerebellar model articulation controller,CMAC)神经网络与模糊PID控制器复合的控制方案,将其应用于四旋翼无人机系统的姿态跟踪设计中,并与模糊PID控制进行对比。实验结果表明,该方法可以根据无人机动态特性的变化实时更新控制器的参数,具备良好的学习能力,能够实现低空四旋翼无人机姿态的模糊自适应跟踪控制。展开更多
Novel neuro-fuzzy techniques are used to dynamically control parameter settings ofgenetic algorithms (GAs).The benchmark routine is an adaptive genetic algorithm (AGA) that uses afuzzy knowledge-based system to contro...Novel neuro-fuzzy techniques are used to dynamically control parameter settings ofgenetic algorithms (GAs).The benchmark routine is an adaptive genetic algorithm (AGA) that uses afuzzy knowledge-based system to control GA parameters.The self-learning ability of the cerebellar modelariculation controller (CMAC) neural network makes it possible for on-line learning the knowledge onGAs throughout the run.Automatically designing and tuning the fuzzy knowledge-base system,neuro-fuzzy techniques based on CMAC can find the optimized fuzzy system for AGA by the renhanced learningmethod.The Results from initial experiments show a Dynamic Parametric AGA system designed by theproposed automatic method and indicate the general applicability of the neuro-fuzzy AGA to a widerange of combinatorial optimization.展开更多
提出一种基于CMAC(Cerebellar Model Articulation Controller)神经网络的板形缺陷模式识别方法,并基于模式识别结果设计了板形模糊控制器.将模式识别与控制器设计合二为一,利用CMAC神经网络识别出相对于6种常见板形缺陷基本模式的隶属...提出一种基于CMAC(Cerebellar Model Articulation Controller)神经网络的板形缺陷模式识别方法,并基于模式识别结果设计了板形模糊控制器.将模式识别与控制器设计合二为一,利用CMAC神经网络识别出相对于6种常见板形缺陷基本模式的隶属度,直接作为板形模糊控制器的前件部,实现了隶属度的求取功能.通过对板形缺陷特征的分析,合理定义了模糊集合,大大地减少了模糊推理的计算量.仿真结果表明,该板形模式识别方法识别精度高,设计的板形模糊控制器可以快速将板形缺陷控制到期望目标,板形控制性能良好.展开更多
文摘To improve the nonlinear approximating ability of cerebellar model articulation controller(CMAC), by introducing the Gauss basis functions and the similarity measure based addressing scheme, a new kind of fuzzy CMAC with Gauss basis functions(GFCMAC) was presented. Moreover, based upon the improvement of the self organizing feature map algorithm of Kohonen, the structural self organizing algorithm for GFCMAC(SOGFCMAC) was proposed. Simulation results show that adopting the Gauss basis functions and fuzzy techniques can remarkably improve the nonlinear approximating capacity of CMAC. Compared with the traditional CMAC,CMAC with general basis functions and fuzzy CMAC(FCMAC), SOGFCMAC has the obvious advantages in the aspects of the convergent speed, approximating accuracy and structural self organizing.
文摘针对低空四旋翼无人机系统具有不确定性的控制特点,设计了一种小脑模型关节控制器(cerebellar model articulation controller,CMAC)神经网络与模糊PID控制器复合的控制方案,将其应用于四旋翼无人机系统的姿态跟踪设计中,并与模糊PID控制进行对比。实验结果表明,该方法可以根据无人机动态特性的变化实时更新控制器的参数,具备良好的学习能力,能够实现低空四旋翼无人机姿态的模糊自适应跟踪控制。
文摘Novel neuro-fuzzy techniques are used to dynamically control parameter settings ofgenetic algorithms (GAs).The benchmark routine is an adaptive genetic algorithm (AGA) that uses afuzzy knowledge-based system to control GA parameters.The self-learning ability of the cerebellar modelariculation controller (CMAC) neural network makes it possible for on-line learning the knowledge onGAs throughout the run.Automatically designing and tuning the fuzzy knowledge-base system,neuro-fuzzy techniques based on CMAC can find the optimized fuzzy system for AGA by the renhanced learningmethod.The Results from initial experiments show a Dynamic Parametric AGA system designed by theproposed automatic method and indicate the general applicability of the neuro-fuzzy AGA to a widerange of combinatorial optimization.
文摘提出一种基于CMAC(Cerebellar Model Articulation Controller)神经网络的板形缺陷模式识别方法,并基于模式识别结果设计了板形模糊控制器.将模式识别与控制器设计合二为一,利用CMAC神经网络识别出相对于6种常见板形缺陷基本模式的隶属度,直接作为板形模糊控制器的前件部,实现了隶属度的求取功能.通过对板形缺陷特征的分析,合理定义了模糊集合,大大地减少了模糊推理的计算量.仿真结果表明,该板形模式识别方法识别精度高,设计的板形模糊控制器可以快速将板形缺陷控制到期望目标,板形控制性能良好.