为了实现永磁同步直线电机PMSLM(permanent magnet synchronous linear motor)高精度的多电气参数在线辨识,提出了一种基于双模型的递推最小二乘电气参数在线辨识算法。首先,根据电机的dq轴电压方程分别建立了辨识定子电阻、永磁体磁链...为了实现永磁同步直线电机PMSLM(permanent magnet synchronous linear motor)高精度的多电气参数在线辨识,提出了一种基于双模型的递推最小二乘电气参数在线辨识算法。首先,根据电机的dq轴电压方程分别建立了辨识定子电阻、永磁体磁链的模型1和辨识q轴电感、d轴电感的模型2,并将2个辨识模型循环结合。其次,基于上述双模型结构,采用递推最小二乘算法实现电气参数在线辨识,并针对PMSLM运行时存在大量动态过程的特性,提出一种具有饱和特性的分段变遗忘因子;然后,对功率开关非理想因素导致的误差电压进行补偿,进一步提高了辨识的精准度;最后,仿真和实验结果证明了该辨识算法的有效性,且具有收敛速度快、辨识结果精度高、多工况适用等优点。展开更多
锂电池荷电状态(state of charge,SOC)的准确估计依赖于精确的锂电池模型参数。在采用带遗忘因子的递推最小二乘法(forgetting factor recursive least square,FFRLS)对锂电池等效电路模型进行参数辨识时,迭代初始值选取不当会造成辨识...锂电池荷电状态(state of charge,SOC)的准确估计依赖于精确的锂电池模型参数。在采用带遗忘因子的递推最小二乘法(forgetting factor recursive least square,FFRLS)对锂电池等效电路模型进行参数辨识时,迭代初始值选取不当会造成辨识精度低、收敛速度慢的问题。为此,将电路分析法与FFRLS相结合,提出基于改进初值带遗忘因子的递推最小二乘法(improved initial value-FFRLS,IIV-FFRLS)。首先,通过离线辨识得到各荷电状态点对应的等效电路模型参数并进行多项式拟合;然后,利用初始开路电压(open circuit voltage,OCV)和OCV-SOC曲线获得初始SOC,代入参数拟合函数得到初始参数;最后,将初始参数带入递推公式得到IIV-FFRLS迭代初始值。对4种锂电池工况进行参数辨识,结果表明:与传统方法相比,IIV-FFRLS的平均相对误差、收敛时间分别减小58%、23%以上;IIV-FFRLS具有更高的辨识精度与更快的收敛速度。展开更多
永磁同步电机(permanent magnet synchronous motor,PMSM)的磁链准确辨识是实现高性能电机控制的基础。针对传统递推最小二乘(recursive least squares,RLS)法受噪声影响小但存在数据饱和,影响辨识精度和动态性问题,以及遗忘最小二乘(re...永磁同步电机(permanent magnet synchronous motor,PMSM)的磁链准确辨识是实现高性能电机控制的基础。针对传统递推最小二乘(recursive least squares,RLS)法受噪声影响小但存在数据饱和,影响辨识精度和动态性问题,以及遗忘最小二乘(recursive least squares with forgetting factor,FRLS)法避免数据饱和但存在参数估计误差与动态跟踪性能矛盾的问题,文章提出一种基于折息最小二乘(recursive least squares with discount factor,DRLS)法的磁链辨识方法。该算法在FRLS法中引入加权因子构成折息因子,采用递推方法进行磁链辨识,减小参数估计误差,提高磁链辨识精度及动态跟踪能力。通过MATLAB仿真及半实物仿真试验,验证所提磁链识别方法的有效性。展开更多
为了有效改善燃料电池混合动力系统的能耗,减少燃料电池性能衰减,保持辅助动力源的荷电状态(state of charge,SOC),提出一种基于遗忘因子递推最小二乘算法(forgetting factor recursive least square,FFRLS)的在线辨识方法和极小值原理...为了有效改善燃料电池混合动力系统的能耗,减少燃料电池性能衰减,保持辅助动力源的荷电状态(state of charge,SOC),提出一种基于遗忘因子递推最小二乘算法(forgetting factor recursive least square,FFRLS)的在线辨识方法和极小值原理的综合能量管理方法。该方法能根据在线辨识的结果和直流母线需求功率,完成对主动力源及辅助动力源的功率分配工作,并与基于离线辨识的算法结果以及等效氢耗最小能量管理方法(equivalent consumption minimization strategy,ECMS)进行对比分析。结果表明,该方法对等效氢耗的优化比离线以及ECMS的效果分别提升了6.33%和4.35%,对燃料电池性能衰减则分别优化了4.72%和6.98%,并能更好地维持辅助动力源的SOC。展开更多
为了减小强陀螺效应条件下双框架控制力矩陀螺(double gimbal control moment gyroscope,简称DGCMG)框架伺服系统的非线性摩擦力矩对框架伺服系统控制精度的影响,提出了一种对DGCMG框架伺服系统非线性摩擦力矩精确建模和辨识的方法。分...为了减小强陀螺效应条件下双框架控制力矩陀螺(double gimbal control moment gyroscope,简称DGCMG)框架伺服系统的非线性摩擦力矩对框架伺服系统控制精度的影响,提出了一种对DGCMG框架伺服系统非线性摩擦力矩精确建模和辨识的方法。分析了DGCMG框架伺服系统的动力学方程,在研究内、外框架摩擦力矩随内外框架角速度和陀螺力矩变化规律的基础上,建立了内、外框架摩擦力矩精确的数学模型,并用控制力矩陀螺的实际参数和实验采集数据对摩擦力矩模型参数进行了遗忘因子递推最小二乘法辨识。实验结果验证了所建模型的正确性和辨识结果的准确性,有助于补偿DGCMG框架伺服系统的非线性摩擦力矩,提高框架伺服系统的控制精度。展开更多
普及推广风电虚拟惯性控制技术,是保障含高比例风电电力系统频率稳定运行的重要需求,但当前缺乏精确估计风电场等效虚拟惯量的理论方法,不能定量评估风电场对电网的惯量贡献。鉴于此,针对风电场等效虚拟惯量的快速时变特征,提出应用受...普及推广风电虚拟惯性控制技术,是保障含高比例风电电力系统频率稳定运行的重要需求,但当前缺乏精确估计风电场等效虚拟惯量的理论方法,不能定量评估风电场对电网的惯量贡献。鉴于此,针对风电场等效虚拟惯量的快速时变特征,提出应用受控自回归辨识模型和基于时变遗忘因子的递推最小二乘辨识求解算法,估计出风电场等效虚拟惯量。所提辨识模型和算法具有快速跟踪能力和良好收敛性,能精确估计风电场快速时变的等效虚拟惯量。在辨识求解中,只需量测风电场公共耦合点(point of common coupling,PCC)的有功功率和频率扰动信息,数据易于获取、实用性强,可良好推广应用。最后通过算例系统验证了辨识模型与方法的有效性和精确性。展开更多
文摘为了实现永磁同步直线电机PMSLM(permanent magnet synchronous linear motor)高精度的多电气参数在线辨识,提出了一种基于双模型的递推最小二乘电气参数在线辨识算法。首先,根据电机的dq轴电压方程分别建立了辨识定子电阻、永磁体磁链的模型1和辨识q轴电感、d轴电感的模型2,并将2个辨识模型循环结合。其次,基于上述双模型结构,采用递推最小二乘算法实现电气参数在线辨识,并针对PMSLM运行时存在大量动态过程的特性,提出一种具有饱和特性的分段变遗忘因子;然后,对功率开关非理想因素导致的误差电压进行补偿,进一步提高了辨识的精准度;最后,仿真和实验结果证明了该辨识算法的有效性,且具有收敛速度快、辨识结果精度高、多工况适用等优点。
文摘永磁同步电机(permanent magnet synchronous motor,PMSM)的磁链准确辨识是实现高性能电机控制的基础。针对传统递推最小二乘(recursive least squares,RLS)法受噪声影响小但存在数据饱和,影响辨识精度和动态性问题,以及遗忘最小二乘(recursive least squares with forgetting factor,FRLS)法避免数据饱和但存在参数估计误差与动态跟踪性能矛盾的问题,文章提出一种基于折息最小二乘(recursive least squares with discount factor,DRLS)法的磁链辨识方法。该算法在FRLS法中引入加权因子构成折息因子,采用递推方法进行磁链辨识,减小参数估计误差,提高磁链辨识精度及动态跟踪能力。通过MATLAB仿真及半实物仿真试验,验证所提磁链识别方法的有效性。
文摘为了有效改善燃料电池混合动力系统的能耗,减少燃料电池性能衰减,保持辅助动力源的荷电状态(state of charge,SOC),提出一种基于遗忘因子递推最小二乘算法(forgetting factor recursive least square,FFRLS)的在线辨识方法和极小值原理的综合能量管理方法。该方法能根据在线辨识的结果和直流母线需求功率,完成对主动力源及辅助动力源的功率分配工作,并与基于离线辨识的算法结果以及等效氢耗最小能量管理方法(equivalent consumption minimization strategy,ECMS)进行对比分析。结果表明,该方法对等效氢耗的优化比离线以及ECMS的效果分别提升了6.33%和4.35%,对燃料电池性能衰减则分别优化了4.72%和6.98%,并能更好地维持辅助动力源的SOC。
文摘为了减小强陀螺效应条件下双框架控制力矩陀螺(double gimbal control moment gyroscope,简称DGCMG)框架伺服系统的非线性摩擦力矩对框架伺服系统控制精度的影响,提出了一种对DGCMG框架伺服系统非线性摩擦力矩精确建模和辨识的方法。分析了DGCMG框架伺服系统的动力学方程,在研究内、外框架摩擦力矩随内外框架角速度和陀螺力矩变化规律的基础上,建立了内、外框架摩擦力矩精确的数学模型,并用控制力矩陀螺的实际参数和实验采集数据对摩擦力矩模型参数进行了遗忘因子递推最小二乘法辨识。实验结果验证了所建模型的正确性和辨识结果的准确性,有助于补偿DGCMG框架伺服系统的非线性摩擦力矩,提高框架伺服系统的控制精度。
文摘普及推广风电虚拟惯性控制技术,是保障含高比例风电电力系统频率稳定运行的重要需求,但当前缺乏精确估计风电场等效虚拟惯量的理论方法,不能定量评估风电场对电网的惯量贡献。鉴于此,针对风电场等效虚拟惯量的快速时变特征,提出应用受控自回归辨识模型和基于时变遗忘因子的递推最小二乘辨识求解算法,估计出风电场等效虚拟惯量。所提辨识模型和算法具有快速跟踪能力和良好收敛性,能精确估计风电场快速时变的等效虚拟惯量。在辨识求解中,只需量测风电场公共耦合点(point of common coupling,PCC)的有功功率和频率扰动信息,数据易于获取、实用性强,可良好推广应用。最后通过算例系统验证了辨识模型与方法的有效性和精确性。