Precisely quantifying the strength of the proximal femur and accurately assessing hip fracture risk would enable those at high risk to be identified so that preventive interventions could be taken.Development of bette...Precisely quantifying the strength of the proximal femur and accurately assessing hip fracture risk would enable those at high risk to be identified so that preventive interventions could be taken.Development of better measures of femoral strength using the clinically展开更多
In order to avoid the curing effects of paraffin on the transport process and reduce the transport difficulty,usually high temperature and high pressure are used in the transportation of oil and gas.The differences of...In order to avoid the curing effects of paraffin on the transport process and reduce the transport difficulty,usually high temperature and high pressure are used in the transportation of oil and gas.The differences of temperature and pressure cause additional stress along the pipeline,due to the constraint of the foundation soil,the additional stress can not release freely,when the additional stress is large enough to motivate the submarine pipelines buckle.In this work,the energy method is introduced to deduce the analytical solution which is suitable for the global buckling modes of idealized subsea pipeline and analyze the relationship between the critical buckling temperature,buckling length and amplitude under different high-order global lateral buckling modes.To obtain a consistent formulation of the problem,the principles of virtual displacements and the variation calculus for variable matching points are applied.The finite element method based on elasto-plastic theory is used to simulate the lateral global buckling of the pipelines under high temperature and pressure.The factors influencing the lateral buckling of pipelines are further studied.Based upon some actual engineering projects,the finite element results are compared with the analytical ones,and then the influence of thermal stress,the section rigidity of pipeline,the soil properties and the trigging force to the high order lateral buckling are discussed.The method of applying the small trigging force on pipeline is reliable in global buckling numerical analysis.In practice,increasing the section rigidity of a pipeline is an effective measure to improve the ability to resist the global buckling.展开更多
This works presents the first fully validated and predictive capability to model the V_0-V_(100) probabilistic penetration response of a woven fabric using a yarn-level fabric finite element model. The V_0-V_(100) cur...This works presents the first fully validated and predictive capability to model the V_0-V_(100) probabilistic penetration response of a woven fabric using a yarn-level fabric finite element model. The V_0-V_(100) curve describes the probability of complete fabric penetration as a function of projectile impact velocity. The exemplar case considered in this paper comprises of a single-layer, fully-clamped, plain-weave Kevlar fabric impacted at the center by a 17-gr, 0.22 cal FSP or fragment-simulating projectile. Each warp and fill yarn in the fabric is individually modeled using 3 D finite elements and the virtual fabric microstructure is validated in detail against the experimental fabric microstructure. Material and testing sources of statistical variability including yarn strength and modulus, inter-yarn friction, precise projectile impact location, and projectile rotation are mapped into the finite element model. A series of impact simulations at varying projectile impact velocities is executed using LS-DYNA on the fabric models, with each model comprising unique mappings. The impact velocities together with the outcomes(penetration, nonpenetration) are used to generate the numerical V_0-V_(100) curve which is then validated against the experimental V_0-V_(100) curve. The numerical Vi-Vrdata(impact, residual velocities) is also validated against the experimental Vi-Vrdata. For completeness, this paper also reports the experimental characterization data and its statistical analysis used for model input, viz. the Kevlar yarn tensile strengths, moduli, and inter-yarn friction, and the experimental ballistic test data used for model validation.展开更多
The finite element analysis was carried out for a composite vertical axis wind turbine with lift-drag combined starting structures to ensure the structure safety of a vertical axis wind turbine(VAWT).The static and mo...The finite element analysis was carried out for a composite vertical axis wind turbine with lift-drag combined starting structures to ensure the structure safety of a vertical axis wind turbine(VAWT).The static and modal analysis of rotor of a composite vertical axis wind turbine was conducted by using ANSYS software.The relevant contour sketch of stress and deformation was obtained.The analysis was made for static structural mechanics,modal analysis of rotor and the total deformation and vibration profile to evaluate the influence on the working capability of the rotor.The analysis results show that the various structure parameters lie in the safety range of structural mechanics in the relative standards.The analysis showing the design safe to operate the rotor of a vertical axis wind turbine.The methods used in this study can be used as a good reference for the structural mechanics′analysis of VAWTs.展开更多
基金supported by The HongKong Polytechnic University Research Grants(No.1-BB81)grants from National Natural Science Foundation of China,Nos.10872078 and 10832012
文摘Precisely quantifying the strength of the proximal femur and accurately assessing hip fracture risk would enable those at high risk to be identified so that preventive interventions could be taken.Development of better measures of femoral strength using the clinically
基金Project(51021004)supported by Innovative Research Groups of the National Natural Science Foundation of ChinaProject(NCET-11-0370)supported by Program for New Century Excellent Talents in Universities of China+1 种基金Project(40776055)supported by the National Natural Science Foundation of ChinaProject(1002)supported by State Key Laboratory of Ocean Engineering Foundation,China
文摘In order to avoid the curing effects of paraffin on the transport process and reduce the transport difficulty,usually high temperature and high pressure are used in the transportation of oil and gas.The differences of temperature and pressure cause additional stress along the pipeline,due to the constraint of the foundation soil,the additional stress can not release freely,when the additional stress is large enough to motivate the submarine pipelines buckle.In this work,the energy method is introduced to deduce the analytical solution which is suitable for the global buckling modes of idealized subsea pipeline and analyze the relationship between the critical buckling temperature,buckling length and amplitude under different high-order global lateral buckling modes.To obtain a consistent formulation of the problem,the principles of virtual displacements and the variation calculus for variable matching points are applied.The finite element method based on elasto-plastic theory is used to simulate the lateral global buckling of the pipelines under high temperature and pressure.The factors influencing the lateral buckling of pipelines are further studied.Based upon some actual engineering projects,the finite element results are compared with the analytical ones,and then the influence of thermal stress,the section rigidity of pipeline,the soil properties and the trigging force to the high order lateral buckling are discussed.The method of applying the small trigging force on pipeline is reliable in global buckling numerical analysis.In practice,increasing the section rigidity of a pipeline is an effective measure to improve the ability to resist the global buckling.
基金supported by Teledyne Scientific&Imaging(TS&I),Internal Research and Development(IR&D)and approved for public release under TSI-PP-17-08
文摘This works presents the first fully validated and predictive capability to model the V_0-V_(100) probabilistic penetration response of a woven fabric using a yarn-level fabric finite element model. The V_0-V_(100) curve describes the probability of complete fabric penetration as a function of projectile impact velocity. The exemplar case considered in this paper comprises of a single-layer, fully-clamped, plain-weave Kevlar fabric impacted at the center by a 17-gr, 0.22 cal FSP or fragment-simulating projectile. Each warp and fill yarn in the fabric is individually modeled using 3 D finite elements and the virtual fabric microstructure is validated in detail against the experimental fabric microstructure. Material and testing sources of statistical variability including yarn strength and modulus, inter-yarn friction, precise projectile impact location, and projectile rotation are mapped into the finite element model. A series of impact simulations at varying projectile impact velocities is executed using LS-DYNA on the fabric models, with each model comprising unique mappings. The impact velocities together with the outcomes(penetration, nonpenetration) are used to generate the numerical V_0-V_(100) curve which is then validated against the experimental V_0-V_(100) curve. The numerical Vi-Vrdata(impact, residual velocities) is also validated against the experimental Vi-Vrdata. For completeness, this paper also reports the experimental characterization data and its statistical analysis used for model input, viz. the Kevlar yarn tensile strengths, moduli, and inter-yarn friction, and the experimental ballistic test data used for model validation.
文摘The finite element analysis was carried out for a composite vertical axis wind turbine with lift-drag combined starting structures to ensure the structure safety of a vertical axis wind turbine(VAWT).The static and modal analysis of rotor of a composite vertical axis wind turbine was conducted by using ANSYS software.The relevant contour sketch of stress and deformation was obtained.The analysis was made for static structural mechanics,modal analysis of rotor and the total deformation and vibration profile to evaluate the influence on the working capability of the rotor.The analysis results show that the various structure parameters lie in the safety range of structural mechanics in the relative standards.The analysis showing the design safe to operate the rotor of a vertical axis wind turbine.The methods used in this study can be used as a good reference for the structural mechanics′analysis of VAWTs.
文摘为确定变参数桥梁最优内力,针对第十四届全国大学生结构设计竞赛赛题中的模型进行理论分析与优化,建立单目标线性优化设计数学模型和桥梁结构简化计算模型.采用穷举算法,结合Visual C++编程优化计算,其中包括桥梁主跨跨径的优化、加载点荷载值选择,进行静力分析、结构优化设计和实际模型试验.推导了数值计算公式,提出以弯曲应变能最小为目标的桥梁跨径、荷载加载位置等参数随机优化的方法,寻求在荷载作用下结构的竖向位移和内力的最小值,得到荷载布置方式,反算主跨跨径,利用有限元软件建模分析,并进行试验验证,得到布载方式1为最优布载,P 1~P 8值分别为40、50、120、130、60、70、80、90 N.