期刊文献+
共找到255篇文章
< 1 2 13 >
每页显示 20 50 100
A novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise,minimum mean square variance criterion and least mean square adaptive filter 被引量:9
1
作者 Yu-xing Li Long Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期543-554,共12页
Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity ... Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals. 展开更多
关键词 Underwater acoustic signal Noise reduction Empirical mode decomposition(EMD) ensemble EMD(eemd) Complete eemd with adaptive noise(CeemdAN) Minimum mean square variance criterion(MMSVC) Least mean square adaptive filter(LMSAF) Ship-radiated noise
在线阅读 下载PDF
基于柴油机曲轴瞬时转速信号EEMD分解的失火故障诊断 被引量:2
2
作者 黄英 李准 +2 位作者 王健 刘辰 胡博睿 《北京理工大学学报》 北大核心 2025年第4期384-390,共7页
对于十缸V型柴油机单缸失火和双缸失火这两类故障,提出了基于曲轴瞬时转速信号的集合经验模态分解的故障诊断策略.该策略考虑到多个转速工况对失火故障诊断的影响,根据柴油机喷油提前角将实车实时采集到该转速下的数据划分为正常、单缸... 对于十缸V型柴油机单缸失火和双缸失火这两类故障,提出了基于曲轴瞬时转速信号的集合经验模态分解的故障诊断策略.该策略考虑到多个转速工况对失火故障诊断的影响,根据柴油机喷油提前角将实车实时采集到该转速下的数据划分为正常、单缸失火和双缸失火这三个工况区间.通过多循环平均方法对三个工况区间数据进行预处理,并通过集合经验模态分解方法分解,该方法能自适应地将曲轴转速信号分解为若干个本征模态函数.通过集合经验模态分解得到每个本征模态函数幅值的异常波动,确定包含故障信息的本征模态函数,为了进一步提取特征,需对该本征模态函数进行快速傅里叶变换,根据主频分量的幅值,得到故障特征.最后在多个转速工况下进行上述诊断流程,得出各个转过速工况的诊断准确率,实现了诊断算法的转速工况敏感性分析.实验结果表明该方法能有效提取故障特征,实现了十缸柴油机基于多个瞬时转速的失火故障诊断. 展开更多
关键词 柴油机 失火故障诊断 集合经验模态分解(eemd) 曲轴瞬时转速 特征提取 本征模态函数(IMFs) 快速傅里叶变换(FFT)
在线阅读 下载PDF
基于EEMD-GWO-VMD的滚动轴承故障特征提取
3
作者 张涛 张振彬 谢剑龙 《中国工程机械学报》 北大核心 2025年第3期470-475,共6页
针对滚动轴承工作环境恶劣、故障信号难以提取的问题,提出一种基于EEMD-GWO-VMD的滚动轴承双重降噪方法。首先,利用集合经验模态分解(EEMD)对采集到的信号进行分解,通过相关系数和峭度指标组合筛选富含故障信息的分量并进行重构。然后,... 针对滚动轴承工作环境恶劣、故障信号难以提取的问题,提出一种基于EEMD-GWO-VMD的滚动轴承双重降噪方法。首先,利用集合经验模态分解(EEMD)对采集到的信号进行分解,通过相关系数和峭度指标组合筛选富含故障信息的分量并进行重构。然后,以包络熵为目标函数,采用灰狼算法(GWO)优化变分模态分解(VMD)的惩罚因子和模态分解层数,并采用仿真信号对比分析VMD、GWO-VMD和EEMD-GWO-VMD这3种方法的降噪效果。最后,结合CWRU数据集和高速列车轴箱轴承台架试验数据,进一步验证EEMD-GWO-VMD降噪方法的有效性。 展开更多
关键词 滚动轴承 灰狼算法(GWO) 集成经验模态分解(eemd) 变分模态分解(VMD)
在线阅读 下载PDF
融合流-热场耦合仿真与EEMD-LSTM网络的油浸式变压器热点温度快速预测方法
4
作者 杨子坚 司马文霞 +3 位作者 杨鸣 黎文浩 袁涛 孙魄韬 《高电压技术》 北大核心 2025年第3期1220-1232,共13页
快速准确地预测变压器热点温度是实现变压器状态检测、故障预测以及动态增容的重要前提,其关键是实现变压器热点温度动态预测以及提高热点温度预测模型的抗噪性能。该文通过流-热场耦合仿真计算,获取不同环境温度和负载变化工况的热点... 快速准确地预测变压器热点温度是实现变压器状态检测、故障预测以及动态增容的重要前提,其关键是实现变压器热点温度动态预测以及提高热点温度预测模型的抗噪性能。该文通过流-热场耦合仿真计算,获取不同环境温度和负载变化工况的热点温度训练样本,采用长短期记忆网络(long short-term memory network,LSTM)构建深度学习模型,从而实现热点温度动态预测。采用集成经验模态分解(ensemble empirical mode decomposition,EEMD)降低输入数据中的噪声干扰,提高深度学习模型抗噪性能。以20 MVA/110 kV油浸式变压器为对象进行分析,并搭建变压器热点温升试验平台进行模型有效性验证,EEMD-LSTM网络预测的热点温度相比试验结果的平均误差仅有1.35℃,引入幅值为5℃的随机噪声后,最大误差仅增大0.47℃。结果表明:基于EEMD-LSTM网络的深度学习模型能够实现变压器热点温度动态预测,同时具有良好的抗噪性能,对变压器负荷能力动态评估与动态增容的研究具有重要意义。 展开更多
关键词 热点温度 流-热场耦合仿真 长短期记忆网络 集成经验模态分解 油浸式变压器
在线阅读 下载PDF
基于改进EEMD和PSO-SVM的永磁同步电机均匀退磁故障诊断
5
作者 熊文琪 张奕珂 王尧尧 《南京航空航天大学学报(自然科学版)》 北大核心 2025年第5期912-923,共12页
基于电流信号提供了一个新的不同均匀退磁程度的故障诊断方法,研究了永磁同步电机(Permanent magnet synchronous motors,PMSMs)的均匀退磁故障诊断方法。提出了一种基于改进的集合经验模式分解(Ensemble empirical mode decomposition,... 基于电流信号提供了一个新的不同均匀退磁程度的故障诊断方法,研究了永磁同步电机(Permanent magnet synchronous motors,PMSMs)的均匀退磁故障诊断方法。提出了一种基于改进的集合经验模式分解(Ensemble empirical mode decomposition,EEMD)算法和粒子群优化-支持向量机(Particle swarm optimization-support vector machine,PSO-SVM)的故障诊断方法。首先利用改进EEMD对采集的定子电流信号进行降噪和重构。其次计算处理后数据的分形盒维数作为故障特征参数。最后通过PSO-SVM处理特征参数诊断均匀退磁故障。通过解析模型仿真实验和原型实验表明,该方法能准确识别永磁同步电机均匀退磁故障,平均识别率超过96%,证明了本文故障诊断方法的有效性。 展开更多
关键词 永磁同步电机 故障诊断 均匀退磁 集合经验模式分解 分形盒维数 支持向量机
在线阅读 下载PDF
基于EEMD分解的阶次跟踪方法研究
6
作者 魏仕华 蔺梦雄 《机电工程》 CAS 北大核心 2024年第9期1604-1612,共9页
摆线针轮减速器组成零部件繁多、构成复杂,工作时噪声干扰大且多在变转速、往复的复杂工况下工作,因此,难以准确提取其内部的故障特征。针对这一问题,提出了一种基于集合经验模态分解(EEMD)与阶次跟踪分析的方法,对摆线针轮减速器进行... 摆线针轮减速器组成零部件繁多、构成复杂,工作时噪声干扰大且多在变转速、往复的复杂工况下工作,因此,难以准确提取其内部的故障特征。针对这一问题,提出了一种基于集合经验模态分解(EEMD)与阶次跟踪分析的方法,对摆线针轮减速器进行了故障诊断。首先,对采集到的时域振动信号和转速信号进行了等角度域差值采样,得到了振动信号的等角域平稳信号;然后,对等角域信号进行了集合经验模态分解,得到了若干个固有模态分量(IMFs),计算了各个固有模态分量的峭度值,选取目标模态分量进行了信号重构;接着,采用快速傅里叶变换得到了故障信号的阶次图;最后,根据减速器的传动方式、各零部件的模数,计算出了各主要部件的故障阶次,对比减速器在故障前后阶次图的能量峰值进行了故障诊断。研究结果表明:该方法能够准确提取包含故障信息的固有模态分量,实现从等时域信号到等角域信号的转换,并提取摆线针轮减速器的滚针故障阶次(8.37阶),故障准确率达到99.6%,可实现摆线针轮减速器在非平稳工况下的故障特征识别,并验证该方法的可行性和有效性。 展开更多
关键词 摆线针轮减速器 集合经验模态分解 阶次跟踪分析 故障诊断 变转速工况 固有模态分量
在线阅读 下载PDF
基于EEMD-CBAM-BiLSTM的牵引负荷超短期预测 被引量:4
7
作者 钟吴君 李培强 涂春鸣 《电工技术学报》 EI CSCD 北大核心 2024年第21期6850-6864,共15页
针对电气化铁路牵引负荷难以预测的问题,构建了一种由集合经验模态分解(EEMD)、改进型卷积块注意力模块(CBAM)和双向长短期神经网络(BiLSTM)组合成的EEMD-CBAM-BILSTM预测方法,有效地降低了牵引负荷超短期预测误差与计算成本。首先,通过... 针对电气化铁路牵引负荷难以预测的问题,构建了一种由集合经验模态分解(EEMD)、改进型卷积块注意力模块(CBAM)和双向长短期神经网络(BiLSTM)组合成的EEMD-CBAM-BILSTM预测方法,有效地降低了牵引负荷超短期预测误差与计算成本。首先,通过EEMD将牵引负荷数据分解为多个稳定、有规律的时序模态函数,突出负荷数据的时序特征;其次,将分解后的各分量整体通入由卷积神经网络(CNN)和改进型CBAM组成的特征提取模块提取全局时序特征;最后,利用贝叶斯优化(BO)搜寻BiLSTM最优参数,并将全局特征通入优化后的神经网络进行超短期时序预测。仿真算例表明,该文所提预测框架在各预测步长下均能很好地把握牵引负荷变化趋势,显著提升了牵引负荷预测的精度。 展开更多
关键词 牵引负荷预测 集合经验模态分解 双向长短期神经网络 贝叶斯优化 卷积块注 意力模块 卷积神经网络
在线阅读 下载PDF
基于PCA和EEMD的柔性直流配电网故障选线算法 被引量:2
8
作者 胡亚辉 韦延方 +2 位作者 王鹏 王晓卫 曾志辉 《电源学报》 CSCD 北大核心 2024年第2期305-315,共11页
柔性直流故障选线技术的发展对直流配电网有着至关重要的作用。本文针对现有柔性直流故障存在的可利用的故障信息较少等问题,提出了一种新算法,该算法有效利用了集合经验模态分解EEMD(ensemble empirical mode decomposition)算法、主... 柔性直流故障选线技术的发展对直流配电网有着至关重要的作用。本文针对现有柔性直流故障存在的可利用的故障信息较少等问题,提出了一种新算法,该算法有效利用了集合经验模态分解EEMD(ensemble empirical mode decomposition)算法、主成分分析PCA(principal component analysis)和相关系数各自的优势。首先,提取暂态电流样本信号,采用EEMD得到以正交基函数表示的数据矩阵;接着,基于PCA进行该矩阵元素特征向量到主成分的转换,将样本信号投影到主元空间实现坐标变换,从而得到对样本数据的聚类和识别结果;最后,基于相关系数进行故障线路判别。本文算法的EEMD揭露了原始历史数据的内在变化规律,PCA能够有效选择故障有效特征。大量实验表明,该新算法准确有效,与现有其他方法相比,在故障信息不明显、不同过渡电阻方面具有优势。 展开更多
关键词 柔性直流配电网 集合经验模态分解 主成分分析 故障选线 相关系数
在线阅读 下载PDF
EEMD-小波在高边坡变形信息提取中的应用研究 被引量:2
9
作者 梁永平 李盛 赖国泉 《安全与环境学报》 CAS CSCD 北大核心 2024年第3期993-1000,共8页
针对高边坡变形呈现非平稳性及数据“噪声”多源的问题,提出了一种定向滤波的变形信息提取方法。首先,利用集合经验模态分解方法分解变形时序数据,结合定量分析法判别模态分量信号频段;然后,对高频模态分量中的“噪声”利用小波函数进... 针对高边坡变形呈现非平稳性及数据“噪声”多源的问题,提出了一种定向滤波的变形信息提取方法。首先,利用集合经验模态分解方法分解变形时序数据,结合定量分析法判别模态分量信号频段;然后,对高频模态分量中的“噪声”利用小波函数进行“靶向”消噪处理,并对趋势项进行傅里叶级数拟合;最后,重构高边坡变形分析模型,实现真实变形量的提取。结果表明,对比分析各项检验指标,通过“靶向”消噪,各高频模态分量消噪效果明显,重构后的集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)-小波高边坡变形分析模型较原始形变和其他模型在精度指标方面提升显著,该方法可用于高边坡的变形预测分析和真实变形量提取。 展开更多
关键词 公共安全 变形 集合经验模态分解(eemd)-小波 模态分量 模型重构 精度 信息提取
在线阅读 下载PDF
逆向云灰色关联相似日的EEMD-RL-GWO-LSTM区域风光功率短期预测 被引量:3
10
作者 张宇华 时鑫洋 +2 位作者 颜楠楠 王育飞 薛花 《太阳能学报》 EI CAS CSCD 北大核心 2024年第10期144-152,共9页
针对现有方法在风光预测时气象因素考虑不全面且未考虑风光功率关联性的问题,提出一种风光功率短期预测方法。首先,以云模型表征风光出力不确定性,逆向云结合灰色关联度分析不同气象特征对输出功率的影响程度,并设立选取标准及综合评分... 针对现有方法在风光预测时气象因素考虑不全面且未考虑风光功率关联性的问题,提出一种风光功率短期预测方法。首先,以云模型表征风光出力不确定性,逆向云结合灰色关联度分析不同气象特征对输出功率的影响程度,并设立选取标准及综合评分指标;其次,采用集合经验模态分解(EEMD)将选取相似日的功率数据分解为子序列;最后,将子序列和气象数据作为基于折射学习策略(RL)的灰狼算法(GWO)优化的改进长短期记忆网络(LSTM)模型的预测输入进行训练,对待预测日的子序列分别预测,并叠加得到短期区域风光发电功率的预测。以中国西北某风光联合电场数据为例,对该模型进行验证,结果表明,相比于现有预测模型,该文所提方法考虑了天气因素,具有较高的预测精度,能够较好地为区域风光联合电场的功率预测提供参考。 展开更多
关键词 逆向云灰色关联相似日 集合经验模态分解 RL-GWO-LSTM神经网络 短期风光功率预测
在线阅读 下载PDF
基于双EEMD与重构的局部放电时延估计方法 被引量:1
11
作者 李明洁 陈东伟 +2 位作者 王通 刘金超 刘卫东 《电波科学学报》 CSCD 北大核心 2024年第4期760-768,共9页
对室内电气设备的局部放电检测与定位是保障设备长期稳定运行的有效手段,而时延估计精度是影响局部放电检测与定位准确度的重要因素。为解决局部放电信号在噪声及多径效应影响下的时延估计精度问题,本文提出了一种基于双集合经验模态分... 对室内电气设备的局部放电检测与定位是保障设备长期稳定运行的有效手段,而时延估计精度是影响局部放电检测与定位准确度的重要因素。为解决局部放电信号在噪声及多径效应影响下的时延估计精度问题,本文提出了一种基于双集合经验模态分解(ensemble empirical mode decomposition,EEMD)与重构的局部放电信号预处理方法。模拟仿真与实验测试结果表明,本文所提出的方法与广义互相关算法相比有效提高了时延估计准确度,且稳定性与鲁棒性更好。本文所提方法有效提高了局部放电信号的信噪比(signal-to-noise ratio,SNR)以及时延估计算法的精度,可用于低SNR及多径效应明显的室内环境中局部放电信号的时延精确估计。 展开更多
关键词 局部放电 广义加权互相关 二次相关 集合经验模态分解(eemd) 低信噪比(SNR) 多径效应
在线阅读 下载PDF
一种结合时序分解与相似分量重组的深度学习滑坡位移组合预测模型 被引量:3
12
作者 瞿伟 李达 +1 位作者 李久元 边子策 《大地测量与地球动力学》 北大核心 2025年第3期221-230,共10页
在对滑坡监测数据粗差进行有效处理及充分顾及滑坡监测数据自身特性的基础上,提出一种结合时序分解与相似分量重组的深度学习滑坡位移组合预测模型。首先,利用孤立森林法对滑坡时序监测数据的显著粗差进行处理,再对其平稳性、自相关性... 在对滑坡监测数据粗差进行有效处理及充分顾及滑坡监测数据自身特性的基础上,提出一种结合时序分解与相似分量重组的深度学习滑坡位移组合预测模型。首先,利用孤立森林法对滑坡时序监测数据的显著粗差进行处理,再对其平稳性、自相关性、正态性进行综合分析,确定模型预测中输入特征序列的最佳长度;其次,利用集合经验模态分解(EEMD)方法,将非稳态滑坡监测数据分解为多个平稳时间序列,再结合样本熵与K-means算法将其划分为高频、中频、低频3类时间分量;最后,通过对比不同神经网络模型的预测精度,分别构建适合于3类时间分量的预测模型,再将预测结果相叠加,实现对滑坡位移的高精度预测。实验区典型滑坡体北斗/GNSS监测数据测试表明,本文组合预测模型对含有显著粗差的滑坡监测数据具有较好的适用性,相较于单一及现有组合模型可显著提高滑坡位移预测精度。 展开更多
关键词 滑坡位移预测 集合经验模态分解 样本熵 深度神经网络 时间卷积网络
在线阅读 下载PDF
基于改进集合经验模态分解和强化视觉Transformer模型的风电机组故障预警
13
作者 许伯强 王彪 +1 位作者 孙丽玲 尹彦博 《电工技术学报》 北大核心 2025年第20期6537-6551,共15页
现有基于数据采集与监视控制系统(SCADA)数据的风电机组故障预警方法往往只针对风电机组的某一位置或者某一类型故障,无法对风电机组整体进行较为全面的预警。针对这一问题,该文提出了基于改进集合经验模态分解(EEMD)和强化的视觉转换器... 现有基于数据采集与监视控制系统(SCADA)数据的风电机组故障预警方法往往只针对风电机组的某一位置或者某一类型故障,无法对风电机组整体进行较为全面的预警。针对这一问题,该文提出了基于改进集合经验模态分解(EEMD)和强化的视觉转换器(ViT)模型的风电机组故障预警方法。首先,对EEMD算法进行改进,分解得到的数据包含不同时间尺度的特征信息,且使得分解过程中不发生信息泄露。采用改进的EEMD算法解构风电机组SCADA多维数据之后,构建反映风电机组实时状态的特征矩阵。然后,结合非对称卷积模块对ViT模型进行强化,并加入可变形注意力模块,在降低计算复杂度的同时使得模型可以充分捕捉不同维度与时间尺度的风电机组特征。最后,将特征矩阵输入强化的ViT模型以获得预测结果,与实际值对比得到残差矩阵,依此进行风电机组故障的预警。经风电机组实际运行SCADA数据验证,该文提出的风电机组故障预警方法准确有效,并可通过残差矩阵进一步辨识风电机组发生的故障类型。 展开更多
关键词 风电机组 数据采集与监视控制系统(SCADA)数据 故障预警 改进集合经验模态分解(eemd) 强化ViT模型
在线阅读 下载PDF
基于模态分解和时间序列的锂电池健康状态估计
14
作者 成燕 郑林弘 刘江 《电源学报》 北大核心 2025年第5期241-250,共10页
针对锂离子电池健康状态SOH(state-of-health)估计未考虑容量再生现象导致预测结果不准确的问题,提出1种基于多时间尺度集合经验模态分解融合时间序列映射输入健康状态非线性关系方法。通过集合经验模态分解EEMD(ensemble empirical mod... 针对锂离子电池健康状态SOH(state-of-health)估计未考虑容量再生现象导致预测结果不准确的问题,提出1种基于多时间尺度集合经验模态分解融合时间序列映射输入健康状态非线性关系方法。通过集合经验模态分解EEMD(ensemble empirical mode decomposition)算法将考虑容量再生现象的电池容量信息分解为高频主趋势信号及低频余量信号,由2类信号预测结果完成对锂离子电池SOH的估算。结果表明,该方法可以捕获容量再生现象提高估算准确度,实现对电池容量退化的拟合,且受不同预测起点影响小,预测的最大均方根差RMSE(root mean square error)和平均绝对误差MAE(mean absolute error)不超过1.5%,最大平均绝对百分误差MAPE(mean absolute percentage error)不超过2%。 展开更多
关键词 锂离子电池 健康状态 容量再生 集合经验模态分解 时间序列
在线阅读 下载PDF
基于EEMD样本熵的高速列车转向架故障特征提取 被引量:39
15
作者 秦娜 金炜东 +2 位作者 黄进 李智敏 刘景波 《西南交通大学学报》 EI CSCD 北大核心 2014年第1期27-32,共6页
为了监测高速列车转向架关键部件的工作状态,提出了采用聚合经验模态分解和样本熵信息测度理论相结合的方法提取信号特征.以转向架正常、空气弹簧失气、横向减振器故障和抗蛇行减振器故障4种典型工况下车体及转向架的振动信号为研究对象... 为了监测高速列车转向架关键部件的工作状态,提出了采用聚合经验模态分解和样本熵信息测度理论相结合的方法提取信号特征.以转向架正常、空气弹簧失气、横向减振器故障和抗蛇行减振器故障4种典型工况下车体及转向架的振动信号为研究对象,将信号进行聚合经验模态分解,得到一系列成分简单的固有模态函数,分别计算样本熵值构成高维特征矢量,最后采用支持向量机进行故障状态的分类识别.实验结果表明,列车在200 km/h速度下,故障识别率可以达到88%,证明了该特征提取算法的有效性. 展开更多
关键词 转向架 阈值消噪 聚合经验模态分解 样本熵 支持向量机
在线阅读 下载PDF
基于EEMD的谐波检测方法 被引量:97
16
作者 朱宁辉 白晓民 董伟杰 《中国电机工程学报》 EI CSCD 北大核心 2013年第7期92-98,14,共7页
针对谐波检测问题,比较几种常用谐波检测方法,总结出各自的适用条件。结合经验模态分解理论和总体平均经验模态分解(empirical mode decomposition,EEMD)算法,提出基于EEMD的谐波检测方法。给出离线谐波检测的具体过程,并在此基础上,首... 针对谐波检测问题,比较几种常用谐波检测方法,总结出各自的适用条件。结合经验模态分解理论和总体平均经验模态分解(empirical mode decomposition,EEMD)算法,提出基于EEMD的谐波检测方法。给出离线谐波检测的具体过程,并在此基础上,首先构造当前时刻采样值始终处于中心位置的向量,然后计算总体谐波分量的在线检测方法。另外,可以通过修改EEMD算法中的频率计算条件实现对特定次数谐波分量的检测。为验证该方法的检测效果,将EEMD算法与瞬时无功功率方法(ip iq)分别应用于仿真和实测数据。检测结果表明,所提方法不但在检测稳态信号时具有很好的精度,而且在检测波动信号时也具有较好的动态特性。 展开更多
关键词 经验模态分解 总体平均经验模态分解 谐波检测 基波提取 在线算法
在线阅读 下载PDF
基于EEMD和Laplace小波的滚动轴承故障诊断 被引量:27
17
作者 李昌林 孔凡让 +3 位作者 黄伟国 陈辉 王超 袁仲洲 《振动与冲击》 EI CSCD 北大核心 2014年第3期63-69,88,共8页
滚动轴承故障导致振动信号中出现多阶模态冲击响应,为了提取单阶模态冲击响应的模态参数,由于Laplace小波相关滤波受多阶模态冲击响应的影响,提出一种基于EEMD和Laplace小波的滚动轴承故障诊断方法。先用EEMD把振动信号中的多阶模态脉... 滚动轴承故障导致振动信号中出现多阶模态冲击响应,为了提取单阶模态冲击响应的模态参数,由于Laplace小波相关滤波受多阶模态冲击响应的影响,提出一种基于EEMD和Laplace小波的滚动轴承故障诊断方法。先用EEMD把振动信号中的多阶模态脉冲响应分解为各单阶模态冲击响应分量,然后用从分解的分量的频谱中选取所需的单阶模态冲击响应分量,再用Laplace小波相关滤波对选取的单阶模态冲击响应分量进行分析,便可以诊断出故障。通过对仿真信号和滚动轴承内圈、外圈、滚动体数据分析很好地验证了提出的方法的有效性。 展开更多
关键词 集合经验模态分解 Laplace小波 相关滤波 滚动轴承
在线阅读 下载PDF
大型旋转机械非平稳振动信号的EEMD降噪方法 被引量:67
18
作者 曹冲锋 杨世锡 杨将新 《振动与冲击》 EI CSCD 北大核心 2009年第9期33-38,共6页
针对现有各种降噪方法处理非平稳机械振动信号存在的缺点,提出一种基于辅助白噪声经验模式分解技术来自适应实现旋转机械非平稳振动信号降噪。该方法是一种集成的经验模式分解(Ensemble Empirical mode decomposition,EEMD)降噪算法,利... 针对现有各种降噪方法处理非平稳机械振动信号存在的缺点,提出一种基于辅助白噪声经验模式分解技术来自适应实现旋转机械非平稳振动信号降噪。该方法是一种集成的经验模式分解(Ensemble Empirical mode decomposition,EEMD)降噪算法,利用正态分布白噪声在经验模式分解中具有的二进尺度分解特性,可以有效抑制常规经验模式分解降噪算法处理非平稳振动信号时产生的模式混叠现象。通过仿真计算和转子启动过程试验振动信号对新降噪方法、经验模式分解降噪方法及小波降噪方法的性能进行了比较测试,结果表明,在非平稳机械振动信号降噪方面,新降噪方法具有更高的信噪比,不仅能够消除高斯噪声,而且能够有效降低脉冲干扰,提取出反映信号实际物理意义的振动固有模式。 展开更多
关键词 降噪 旋转机械 启动过程 振动信号 集成经验模式分解
在线阅读 下载PDF
基于EEMD、度量因子和快速峭度图的滚动轴承故障诊断方法 被引量:57
19
作者 彭畅 柏林 谢小亮 《振动与冲击》 EI CSCD 北大核心 2012年第20期143-146,共4页
基于EMD、谱峭度以及包络分析的滚动轴承故障诊断方法,提出了改进的基于EEMD、度量因子和快速峭度图的诊断方法。该方法首先将故障信号进行EEMD分解得到一组IMFs,然后用度量因子筛选出最能表征故障信息的IMF分量重构信号,再用快速峭度... 基于EMD、谱峭度以及包络分析的滚动轴承故障诊断方法,提出了改进的基于EEMD、度量因子和快速峭度图的诊断方法。该方法首先将故障信号进行EEMD分解得到一组IMFs,然后用度量因子筛选出最能表征故障信息的IMF分量重构信号,再用快速峭度图构造最优带通滤波器,最后将滤波后的重构信号进行包络分析并将包络谱与轴承故障特征频率进行比较,从而诊断出具体故障。滚动轴承的内圈故障仿真数据以及工程实测数据均很好地验证了提出的改进方法的有效性,说明其具有良好的应用前景。 展开更多
关键词 eemd 度量因子 快速峭度图 包络分析
在线阅读 下载PDF
基于EEMD样本熵和GK模糊聚类的机械故障识别 被引量:31
20
作者 王书涛 李亮 +1 位作者 张淑清 孙国秀 《中国机械工程》 EI CAS CSCD 北大核心 2013年第22期3036-3040,3044,共6页
针对目前各种机械故障诊断方法的局限性,提出了基于总体平均经验模式分解(EEMD)样本熵和GK模糊聚类的故障特征提取和分类方法,建立了一种机械故障准确识别的有效途径。首先,对机械振动信号进行EEMD分解,得到若干不同时间尺度的固有模态... 针对目前各种机械故障诊断方法的局限性,提出了基于总体平均经验模式分解(EEMD)样本熵和GK模糊聚类的故障特征提取和分类方法,建立了一种机械故障准确识别的有效途径。首先,对机械振动信号进行EEMD分解,得到若干不同时间尺度的固有模态函数(IMF)分量。其次,通过相关性分析和能量相结合的准则对IMF分量进行筛选,并将筛选出的IMF分量的样本熵组成故障特征向量。最后,将构造的特征向量输入到GK模糊聚类分类器中进行聚类识别。实验及工程实例证明了该方法的有效性和优越性。 展开更多
关键词 总体平均经验模式分解(eemd) 样本熵 GK模糊聚类 机械故障识别
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部