图编辑距离(GED)是一种常用的图相似性度量函数,其精确计算为NP-hard问题。因此,近期研究者们提出诸多基于图神经网络的图相似度计算方法。现有方法在特征提取时忽略了两个图节点之间的跨图交互信息,并且缺乏对图中节点高阶关系的学习...图编辑距离(GED)是一种常用的图相似性度量函数,其精确计算为NP-hard问题。因此,近期研究者们提出诸多基于图神经网络的图相似度计算方法。现有方法在特征提取时忽略了两个图节点之间的跨图交互信息,并且缺乏对图中节点高阶关系的学习。针对以上问题,提出了一种基于跨图特征融合和结构感知注意力的图相似度计算模型(cross-graph feature fusion with structure-aware attention for graph similarity computation,CFSA)。首先,该模型提出了一种跨图节点特征学习方法,引入跨图注意力机制提取节点的跨图交互信息,并将节点的局部特征和跨图交互特征进行有效融合;其次,提出了一种结构感知型多头注意力机制,结合节点特征信息和图结构信息,有效捕捉节点间的高阶关系。在三个公共数据集上的实验结果表明,CFSA模型的预测准确率相较于现有模型分别提升4.8%、5.1%、15.8%,且在大多项性能指标上均有优势,证明了CFSA在GED预测任务上的有效性和效率。展开更多
文摘图编辑距离(GED)是一种常用的图相似性度量函数,其精确计算为NP-hard问题。因此,近期研究者们提出诸多基于图神经网络的图相似度计算方法。现有方法在特征提取时忽略了两个图节点之间的跨图交互信息,并且缺乏对图中节点高阶关系的学习。针对以上问题,提出了一种基于跨图特征融合和结构感知注意力的图相似度计算模型(cross-graph feature fusion with structure-aware attention for graph similarity computation,CFSA)。首先,该模型提出了一种跨图节点特征学习方法,引入跨图注意力机制提取节点的跨图交互信息,并将节点的局部特征和跨图交互特征进行有效融合;其次,提出了一种结构感知型多头注意力机制,结合节点特征信息和图结构信息,有效捕捉节点间的高阶关系。在三个公共数据集上的实验结果表明,CFSA模型的预测准确率相较于现有模型分别提升4.8%、5.1%、15.8%,且在大多项性能指标上均有优势,证明了CFSA在GED预测任务上的有效性和效率。