Objective:To investigate the effect of SHU555A,a clinically approved iron nanoparticle,labeling on differentiation of bone marrow mesenchymal stem cells(BMSCs) into neurocyte-like cells in vitro.Methods:10 times dilut...Objective:To investigate the effect of SHU555A,a clinically approved iron nanoparticle,labeling on differentiation of bone marrow mesenchymal stem cells(BMSCs) into neurocyte-like cells in vitro.Methods:10 times dilution of 10μl,20μl,40μl and 80μl SHU555A were added to 2ml of culture medium containing rat BMSCs to obtain four experimental groups of SHU555A labeling of BMSCs with ferri ion concentrations of 14μg/ml,28μg/ml,56μg/ml and 112μg/ml,respectively.2ml of culture medium with rat BMSCs did not contain SHU555A served as control group.The BMSCs of all the groups were pre-induced by bFGF,and induced by DMSO/butylated hydroxyanisole(BHA) for six hours,subsequently reverse transcription polymerase chain reaction(RT-PCR) technique was employed to detect mRNA expression of nestin,neuronspecific analase(NSE) and glial fibrillary acid protein(GFAP).Western blot technique was used to detectprotein expression of nestin.Results:Quantitative-PCR revealed high mRNA expression of nestin,NSE and GFAP induced by DMSO/BHA in all the experimental groups,but the difference between the experimental groups and the control group was not significant(P>0.05).Western blot analysis demonstrated there was no statistically significant difference in nestin protein expression between the experimental groups and the control group(P>0.05).Conclusion:SHU555A labeling do not affect differentiation of rat BMSCs into neurocyte-like cells in vitro.展开更多
Since the diccovery of neural stem cells(NSCs)in the embryonic and adult mammalian central nerous system,it provided novel ideas forneurogenesis as the potential of proliferation and differentiation of NSCs.One of the...Since the diccovery of neural stem cells(NSCs)in the embryonic and adult mammalian central nerous system,it provided novel ideas forneurogenesis as the potential of proliferation and differentiation of NSCs.One of the ways to promote the clinical application of neural stem cells(NSCs)is searching effective methods which regulate the proliferation and differentiation.This is also a problem urgently to be solved in medical field.Plenty of earlier studies have shown that traditional chinese medicine can promote the proliferation and differentiation of NSCs by regulating the related signaling pathway in vivo and in vitro.The reports of Chinese and foreign literatures on regulating the proliferation and differentiation of neural stem cells in recent ten years and their target and signaling pathways is analyzed in this review.The traditional chinese medicine regulate proliferation and differentiation of NSCs by the signaling pathways of Notch,PI3K/Akt,Wnt/β-catenin,and GFs.And,those signaling pathways have cross-talk in the regulation progress.Moreover,some traditional Chinese medicine,such as astragalus,has a variety of active ingredients to regulate proliferation and differentiation of NSCs through different signaling pathways.However,to accelerate the clinical application of neural stem cells,the studies aboutthe proliferation and differentiation of NSCs and Chinese medicine should be further deepened,the mechanism of multiple targets and the comprehensive regulation function of traditional Chinese medicine should be clarified.展开更多
OBJECTIVE To investigate the inhibitory effect of scutellarin on the self-renewal and differentiation of HT-29 cells-derived cancer stem-like cells(HT-29CSC)in vitro and in vivo,and to explore its mechanism.METHODS Th...OBJECTIVE To investigate the inhibitory effect of scutellarin on the self-renewal and differentiation of HT-29 cells-derived cancer stem-like cells(HT-29CSC)in vitro and in vivo,and to explore its mechanism.METHODS The effect of scutellarin on the growth of HT-29CSC was determined by 3D Culture assay.The effect of scutellarin on growth and transformation of HT-29CSC was probed by soft agar colony formation assay.The effect of scutellarin on the differentiation of HT-29CSC was determined by serum induction differentiation assay in vitro.The effects of scutellarin on the expressions of marker gene Lgr5,target gene c-Myc,proliferation gene CK20 and Nanog gene were measured by quantitative real-time RT-PCR.Investigate the effect of scutellarin on the expression of c-Myc,Gli1,and Lgr5 protein by Western blotting.A subcutaneous xenograft model of colon cancer in nude mice was established and administered by intraperitoneal injection.The change of body weight and tumor size of nude mice were observed every two days.Investi⁃gate the effects of scutellarin on the growth of xenograft tumors in nude mice.The expression of CD133,Lgr5,Gli1,Ptch1,c-Myc,Ki67,CK20,Nanog gene in tumors were measured by quantitative real-time RT-PCR.The expression of c-Myc,Gli1,Lgr5,CD133,Ki67 protein were measured by Western blotting.RESULTS Scutellarin can inhibit the growth of HT-29CSC in 3D culture.Compared with the solvent control group,scutellarin can significantly inhibit the growth and transformation and differentiation of HT-29CSC in vitro(P<0.01).The expression levels of marker genes Lgr5,target gene c-Myc,proliferation gene CK20 and Nanog in HT-29CSC were down-regulated by scutellarin.Scutellarin can reduce the expression of c-Myc,Gli1,and Lgr5 protein in HT-29CSC.Scutellarin can inhibit the growth of colon cancer xenografts,lower CD133,Lgr5,Gli1,Ptch1,c-Myc,Ki67,CK20,and Nanog mRNA level of xenograft tumors,reduce the expression of c-Myc,Gli1,Lgr5,CD133,and Ki67 protein of xenograft tumors in nude mice.CONCLUSION Scutellarin,which is the main component of scutellaria barbata,can inhibit the differentiation of HT-29CSC and the mechanism is to inhibit the activity of Hedgehog signaling pathway.展开更多
Spinal cord injury repair is one of the major challenges in medicine,as it can lead to permanent loss of function of central nervous system and damage to other function of the body.Stem cell transplantation together w...Spinal cord injury repair is one of the major challenges in medicine,as it can lead to permanent loss of function of central nervous system and damage to other function of the body.Stem cell transplantation together with tissue engineering is increasingly becoming a potential choice of treatment.However,direct transplantation of stem cells without scaffolds has yielded poor clinical outcome.Here we show a strategy of using mouse embryonic stem cells(ESCs)cultured within a silk fibroin(SF)based,three-dimensional scaffold with oriented channels by a directional temperature field freezing technique and lysophilization.We find that the ESCs maintained proliferation and migrated in the scaffolds and the cells migrated fastest along the SF channels.SF scaffolds contributed to ESC differentiation into neural and glial cell like cells and expressions of the neural and glial cell markers MAP2 and GFAP were greatly elevated when retinoic acid was used as an inducing factor.Our results suggest that this approach may offer some hope in the future for spinal cord injury repair using SF scaffolds and ESCs.展开更多
The experiment was designed to study effects of retinoic acid and ascorbic acid on differentiation of mouse embryonic stem cells to cardiomyocytes. Embryonic bodies (EB) were developed from mESC in suspension cultur...The experiment was designed to study effects of retinoic acid and ascorbic acid on differentiation of mouse embryonic stem cells to cardiomyocytes. Embryonic bodies (EB) were developed from mESC in suspension culture, different levels of concentration of retinoic acid and ascorbic acid were used to determine the optimal conditions for EB formation. The results showed that the optimal concentrations were 10.9 mol. L-1 and 0.1 mg. mL-1 for retinoic acid and ascorbic acids, respectively. 50% of EB which was significantly (p〈0.05) different from the control group developed to cardiomyocytes. In conclusion, rctinoic acid and ascorbic acid had strong ability to promote cardiomyocyte differentiation of mouse embryonic stem cells. 10-9 mol. L-1 retinoic acid and 0.10 mg. mL-1 ascorbic acids were recommended to induce differentiation of mouse ES ceUs toward cardiomyocytes.展开更多
Embryonic stem (ES) cell biology is attracting much attention in cell biology because of their pluripotent behaviors and potential therapeutic applications. However,what maintains ES cell pluripotency and what trigger...Embryonic stem (ES) cell biology is attracting much attention in cell biology because of their pluripotent behaviors and potential therapeutic applications. However,what maintains ES cell pluripotency and what triggers ES cell展开更多
Objective Diabetic patients pose a greater challenge in managing chronic wound healing,leading to a higher amputation risk compared to non-diabetic patients.Due to their paracrine function by secreting various cytokin...Objective Diabetic patients pose a greater challenge in managing chronic wound healing,leading to a higher amputation risk compared to non-diabetic patients.Due to their paracrine function by secreting various cytokines and angiogenic factors,mesenchymal stem cells(MSCs)have been acknowledged to be a potential agent in modulating wound healing process.However,post-transplanted MSCs are vulnerable to death,indicating poor survival and migration ability in the wound site of the host,especially under hyperglycemia.As hyperglycemia induces reactive oxygen species(ROS)generation and cellular apoptosis,improvement of MSCs survival and migration potentials under hyperglycemia could contribute to a more efficient MSCs-based wound healing therapy.Salidroside(Sa),a small-molecule drug derived from Rhodiola plant,has been proved to enhance the paracrine function of skeletal muscle cells,as well as their migration even under hypoxichyperglycemia.Herein,we investigated whether Sa could improve the survival and migration potentials of MSCs,subsequently enhance the wound healing process under hyperglycemia.Methods MSCs were cultured under three conditions:low glucose,high glucose,and high glucose+Sa.qPCR analysis and western blotting were done to examine the mRNA and protein expression level of several factors which are important in upregulating the wound healing process.MTT colorimetric assay,intracellular ROS detection,and flow cytometry assay were employed to examine the effect of Sa in MSCs survival.Transwell chamber assay,scratch assay,and phalloidin staining were done to elucidate the role of Sa in regulating MSCs migration potential.For in vivo experiment,diabetic wound healing mice model was generated to elucidate the effect of Sa-pretreated MSCs transplantation in wound closure rate,as well as re-epithelization status,observed with hematoxylin and eosin staining.The diabetic wound healing mice model were divided into three groups:1)mice injected with PBS,2)mice transplanted with PBS-pretreated MSCs,and 3)mice transplanted with Sa-pretreated MSCs.Results(1)Hyperglycemic condition induced the generation of ROS and suppressed total cell number of MSCs,while Sa treatment into MSCs restored these hyperglycemia-induced alterations.In line with this,total apoptotic cells were also suppressed by treating MSCs with Sa.The expression level of cell survival factor,heme-oxygenase 1(HO-1),was enhanced in Sa-pretreated MSCs.Further treatment of HO-1 inhibitor into Sa-pretreated MSCs nullified the ROS level and total apoptotic cells,indica-ting the importance of HO-1 in mediating the Sa-induced survival of MSCs under hyperglycemia.(2)Transwell chamber and scratch assay results showed that Sa-pretreated MSCs have a higher migration potential under hyperglycemia,supported by higher F-actin polymerization fractal dimension.Fibroblast growth factor 2(FGF2)and hepatocyte growth factor(HGF)expression level,which are essential factors for cell migration,were also improved in Sa-pretreated MSCs under hyperglycemia.(3)In diabetic wound healing mice model,transplantation of Sa-pretreated MSCs resulted in significantly improved wound closure rate and re-epithelization.The protein levels of HO-1,FGF2,and HGF were also enhanced in the tissues obtained from the wound site of diabetic wound healing mice model which were transplanted with Sa-pretreated MSCs.Conclusions Salidroside pretreatment on MSCs could improve their survival and migration potentials,subsequently promoting wound healing process under hyperglycemia.This prospective MSC-based therapy could serve as a novel strategy to improve diabetic wound healing.展开更多
Aim The present study aims to investigate whether BMSCs transplantation may inhibit hypertrophic hearts and its underlying mechanisms. Background There is no evidence so far that Bone marrow-derived mesenchy- mal stem...Aim The present study aims to investigate whether BMSCs transplantation may inhibit hypertrophic hearts and its underlying mechanisms. Background There is no evidence so far that Bone marrow-derived mesenchy- mal stem cells (BMSCs) can heal pathological myocardial hypertrophy. Methods To observe the antihypertrophic actions, BMSCs was indirectly cocultured with NRVCs in vitro, or intramyocardially transplanted into hypertrophic hearts in vivo. Results ISO-induced typical hypertrophic characteristics of cardiomyocytes were obviously preven- ted by BMSCs in the co-culture model in vitro and after BMSCs transplantation in vivo. Furthermore, the activation of the Ca2+/calcineurin/NFATc3 hypertrophic pathway was shown abrogated in the presence of BMSCs both in vitro and in vivo. Interestingly, blockage of VEGF release from BMSCs but not bFGF and IGF-1 can abolish the protec- tive effects of BMSCs on cardiomyocytes hypertrophy. Consistently, VEGF administration attenuated ISO-induced BNP and β-MHC expression and the activation of Ca2+/cal- the enlargement of cellular size, the augment of ANP, cineurin/NFATc3 hypertrophic pathway, and these can be abrogated by blocking VEGFR-1, indicating VEGFR-1 is involved in the antihypertrophic role of VEGF. We further find that the ample VEGF secretion contributing to the anti-hypertrophic effects of BMSCs originates from BMSCs interplay with cardiac cells but not BMSCs or cardiomyo- cytes alone. Conclusions Thus, mesenchymal stem cells are able to inhibit myocardial hypertrophy via interacting with cardiomyocytes so as to promote VEGF release which inhibits the activation of the Ca2+/calcineurin/NFATc3 hypertrophic signaling pathway in cardiac cells, in addition to its well-recognized ability to ameliorate myocardial injuries by replacing dead cells.展开更多
Aim Aging is an independent risk factor for heart disease, however the effective intervention has not been found so far. Bone marrow mesenchymal stem cells (BMSCs) have been shown to offer a wide variety of cel- l...Aim Aging is an independent risk factor for heart disease, however the effective intervention has not been found so far. Bone marrow mesenchymal stem cells (BMSCs) have been shown to offer a wide variety of cel- lular functions including the protective effects on damaged hearts. Here we investigated the antiaging properties of BMSCs and the underlying mechanism in a cellular model of cardiomyocyte senescence and a rat model of aging hearts. Methods In vitro study, neonatal rat ventricular cells (NRVCs) and BMSCs were cocultured in the same dish with a semipermeable membrane to separate the two populations. In vivo, the BMSCs were injected into the rat hearts to observe their antiaging effects. The expression of β-galactosidase and aging-related proteins, and the lev- els of oxidative stress were determined in vivo and in vitro. The heart function was measured by the High-Resolution Imaging System. Results Monocultured NRVCs displayed the senescence-associated phenotypes, characterized by an increase in the number of β-galaetosidase-positive cells and decreases in the degradation and disappearance of cellular organelles in a time-dependent manner. The levels of reactive oxygen species and malondialdehyde were el- evated, whereas the activities of antioxidant enzymes superoxide dismutase and glutathione peroxidase were de- creased, along with upregulation of p53, p21cipl/wafl and p16INK4a in the aging eardiomyoeytes. These deleterious alterations were abrogated in aging NRVCs cocultured with BMSCs. Qualitatively, the same senescent phenotypes were consistently observed in aging rat hearts. Notably, BMSC transplantation significantly prevented these detri- mental alterations and improved the impaired cardiac function in the aging rats. Conclusions BMSCs possess strong antiseneseence action on the aging NRVCs and hearts and can improve cardiac function after transplantation in aging rats. The present study, therefore, provides an alternative approach for the treatment of heart failure in the elderly population.展开更多
Non-alcoholic fatty liver disease(NAFLD)is the most common chronic liver disease,defined by several phases,ranging from benign fat accumulation to non-alcoholic steatohepatitis(NASH),which can lead to liver cancer and...Non-alcoholic fatty liver disease(NAFLD)is the most common chronic liver disease,defined by several phases,ranging from benign fat accumulation to non-alcoholic steatohepatitis(NASH),which can lead to liver cancer and cirrhosis.Although NAFLD is a disease of disordered metabolism,it also involves several immune cell-mediated inflammatory processes,either promoting and/or suppressing hepatocyte inflammation through the secretion of pro-inflammatory and/or anti-inflammatory factors to influence the NAFLD process.However,the underlying disease mechanism and the role of immune cells in NAFLD are still under investigation,leaving many open-ended questions.In this review,we presented the recent concepts about the interplay of immune cells in the onset and pathogenesis of NAFLD.We also highlighted the specific non-immune cells exhibiting immunological properties of therapeutic significance in NAFLD.We hope that this review will help guide the development of future NAFLD therapeutics.展开更多
Osteoarthritis(OA)is a most common form of degenerative joint disease,primarily characterized by the degradation of articular cartilage,subchondral sclerosis and inflammation of the synovial membrane.Mesenchymal stem ...Osteoarthritis(OA)is a most common form of degenerative joint disease,primarily characterized by the degradation of articular cartilage,subchondral sclerosis and inflammation of the synovial membrane.Mesenchymal stem cells(MSCs),a multipotent adult stem cell population,can be isolated from many connective tissue lineages,including those of the diarthrodial joint.Joint-resident MSCs or MSC-like progenitor cells contribute to the maintenance of healthy microenvironment or to the response to trauma.The onset of degenerative changes in the joint related to abnormal condition or depletion of these endogenous MSCs and native host hyaline cartilage cells,leading to limited selfrepair potential of the joint and advance of the degradation.To date,no acknowledged medical treatment strategies,including non-operative and classical surgical techniques,are efficient in restoring normal anatomy and function of hyaline cartilage in OA.This highlights an urgent need for better celled-based therapeutic strategies that supplement these functional cel s exogenously to recover the tissue homeostasis and repair in joint cavity via chondrogenic and anti-in fl ammatory functions.In this review we focus on the role of native MSCs in healthy or OA joint and recent progress in cel-based researches utilizing culture-expanded chondrocytes,pluripotent stem cel s,or MSCs from different sources for treating OA.展开更多
Recent progresses in 2018–2019 from space experiments onboard SJ-10 recoverable satellite and on parabolic flight were summarized,mainly focusing on cell mechano-biological coupling under microgravity.In the meantime...Recent progresses in 2018–2019 from space experiments onboard SJ-10 recoverable satellite and on parabolic flight were summarized,mainly focusing on cell mechano-biological coupling under microgravity.In the meantime,technical pre-research and experimental system design for the biomechanics research platform on China Space Station was carried out and updated.展开更多
基金Henan ontstanding talent program(084200510012)zhou research programs(083SGYS33262-5)zhou university 2011 project,third constraction projection:basic and clinical research of stem cell
文摘Objective:To investigate the effect of SHU555A,a clinically approved iron nanoparticle,labeling on differentiation of bone marrow mesenchymal stem cells(BMSCs) into neurocyte-like cells in vitro.Methods:10 times dilution of 10μl,20μl,40μl and 80μl SHU555A were added to 2ml of culture medium containing rat BMSCs to obtain four experimental groups of SHU555A labeling of BMSCs with ferri ion concentrations of 14μg/ml,28μg/ml,56μg/ml and 112μg/ml,respectively.2ml of culture medium with rat BMSCs did not contain SHU555A served as control group.The BMSCs of all the groups were pre-induced by bFGF,and induced by DMSO/butylated hydroxyanisole(BHA) for six hours,subsequently reverse transcription polymerase chain reaction(RT-PCR) technique was employed to detect mRNA expression of nestin,neuronspecific analase(NSE) and glial fibrillary acid protein(GFAP).Western blot technique was used to detectprotein expression of nestin.Results:Quantitative-PCR revealed high mRNA expression of nestin,NSE and GFAP induced by DMSO/BHA in all the experimental groups,but the difference between the experimental groups and the control group was not significant(P>0.05).Western blot analysis demonstrated there was no statistically significant difference in nestin protein expression between the experimental groups and the control group(P>0.05).Conclusion:SHU555A labeling do not affect differentiation of rat BMSCs into neurocyte-like cells in vitro.
基金supported by National Natural Science Foundation of China(81473549)Fundamental Research Funds for Central Universities(XDJK2017E158)
文摘Since the diccovery of neural stem cells(NSCs)in the embryonic and adult mammalian central nerous system,it provided novel ideas forneurogenesis as the potential of proliferation and differentiation of NSCs.One of the ways to promote the clinical application of neural stem cells(NSCs)is searching effective methods which regulate the proliferation and differentiation.This is also a problem urgently to be solved in medical field.Plenty of earlier studies have shown that traditional chinese medicine can promote the proliferation and differentiation of NSCs by regulating the related signaling pathway in vivo and in vitro.The reports of Chinese and foreign literatures on regulating the proliferation and differentiation of neural stem cells in recent ten years and their target and signaling pathways is analyzed in this review.The traditional chinese medicine regulate proliferation and differentiation of NSCs by the signaling pathways of Notch,PI3K/Akt,Wnt/β-catenin,and GFs.And,those signaling pathways have cross-talk in the regulation progress.Moreover,some traditional Chinese medicine,such as astragalus,has a variety of active ingredients to regulate proliferation and differentiation of NSCs through different signaling pathways.However,to accelerate the clinical application of neural stem cells,the studies aboutthe proliferation and differentiation of NSCs and Chinese medicine should be further deepened,the mechanism of multiple targets and the comprehensive regulation function of traditional Chinese medicine should be clarified.
基金National Natural Science Foundation of China(8157381381173598)+1 种基金Excellent Talent Program of Chengdu University of Traditional Chinese Medicine(YXRC2019002)Fund of Scientific Research Innovation Team Construction in Sichuan Provincial University(18TD0017)
文摘OBJECTIVE To investigate the inhibitory effect of scutellarin on the self-renewal and differentiation of HT-29 cells-derived cancer stem-like cells(HT-29CSC)in vitro and in vivo,and to explore its mechanism.METHODS The effect of scutellarin on the growth of HT-29CSC was determined by 3D Culture assay.The effect of scutellarin on growth and transformation of HT-29CSC was probed by soft agar colony formation assay.The effect of scutellarin on the differentiation of HT-29CSC was determined by serum induction differentiation assay in vitro.The effects of scutellarin on the expressions of marker gene Lgr5,target gene c-Myc,proliferation gene CK20 and Nanog gene were measured by quantitative real-time RT-PCR.Investigate the effect of scutellarin on the expression of c-Myc,Gli1,and Lgr5 protein by Western blotting.A subcutaneous xenograft model of colon cancer in nude mice was established and administered by intraperitoneal injection.The change of body weight and tumor size of nude mice were observed every two days.Investi⁃gate the effects of scutellarin on the growth of xenograft tumors in nude mice.The expression of CD133,Lgr5,Gli1,Ptch1,c-Myc,Ki67,CK20,Nanog gene in tumors were measured by quantitative real-time RT-PCR.The expression of c-Myc,Gli1,Lgr5,CD133,Ki67 protein were measured by Western blotting.RESULTS Scutellarin can inhibit the growth of HT-29CSC in 3D culture.Compared with the solvent control group,scutellarin can significantly inhibit the growth and transformation and differentiation of HT-29CSC in vitro(P<0.01).The expression levels of marker genes Lgr5,target gene c-Myc,proliferation gene CK20 and Nanog in HT-29CSC were down-regulated by scutellarin.Scutellarin can reduce the expression of c-Myc,Gli1,and Lgr5 protein in HT-29CSC.Scutellarin can inhibit the growth of colon cancer xenografts,lower CD133,Lgr5,Gli1,Ptch1,c-Myc,Ki67,CK20,and Nanog mRNA level of xenograft tumors,reduce the expression of c-Myc,Gli1,Lgr5,CD133,and Ki67 protein of xenograft tumors in nude mice.CONCLUSION Scutellarin,which is the main component of scutellaria barbata,can inhibit the differentiation of HT-29CSC and the mechanism is to inhibit the activity of Hedgehog signaling pathway.
基金supported by funds from Huazhong University of Science and Technology,Wuhan,China
文摘Spinal cord injury repair is one of the major challenges in medicine,as it can lead to permanent loss of function of central nervous system and damage to other function of the body.Stem cell transplantation together with tissue engineering is increasingly becoming a potential choice of treatment.However,direct transplantation of stem cells without scaffolds has yielded poor clinical outcome.Here we show a strategy of using mouse embryonic stem cells(ESCs)cultured within a silk fibroin(SF)based,three-dimensional scaffold with oriented channels by a directional temperature field freezing technique and lysophilization.We find that the ESCs maintained proliferation and migrated in the scaffolds and the cells migrated fastest along the SF channels.SF scaffolds contributed to ESC differentiation into neural and glial cell like cells and expressions of the neural and glial cell markers MAP2 and GFAP were greatly elevated when retinoic acid was used as an inducing factor.Our results suggest that this approach may offer some hope in the future for spinal cord injury repair using SF scaffolds and ESCs.
基金Supported by the Scientifi c Research Foundation for Doctors of Northeast Agricultural University(2012RCB27)Open Projects of Key Laboratory of Animal Genetics,Breeding and Reproduction,College of Heilongjiang Province(GXZDSYS-2012-07)
文摘The experiment was designed to study effects of retinoic acid and ascorbic acid on differentiation of mouse embryonic stem cells to cardiomyocytes. Embryonic bodies (EB) were developed from mESC in suspension culture, different levels of concentration of retinoic acid and ascorbic acid were used to determine the optimal conditions for EB formation. The results showed that the optimal concentrations were 10.9 mol. L-1 and 0.1 mg. mL-1 for retinoic acid and ascorbic acids, respectively. 50% of EB which was significantly (p〈0.05) different from the control group developed to cardiomyocytes. In conclusion, rctinoic acid and ascorbic acid had strong ability to promote cardiomyocyte differentiation of mouse embryonic stem cells. 10-9 mol. L-1 retinoic acid and 0.10 mg. mL-1 ascorbic acids were recommended to induce differentiation of mouse ES ceUs toward cardiomyocytes.
文摘Embryonic stem (ES) cell biology is attracting much attention in cell biology because of their pluripotent behaviors and potential therapeutic applications. However,what maintains ES cell pluripotency and what triggers ES cell
基金Supported by grants from the National Natural Science Foundation of China ( 81372202,81872273, 31871367)
文摘Objective Diabetic patients pose a greater challenge in managing chronic wound healing,leading to a higher amputation risk compared to non-diabetic patients.Due to their paracrine function by secreting various cytokines and angiogenic factors,mesenchymal stem cells(MSCs)have been acknowledged to be a potential agent in modulating wound healing process.However,post-transplanted MSCs are vulnerable to death,indicating poor survival and migration ability in the wound site of the host,especially under hyperglycemia.As hyperglycemia induces reactive oxygen species(ROS)generation and cellular apoptosis,improvement of MSCs survival and migration potentials under hyperglycemia could contribute to a more efficient MSCs-based wound healing therapy.Salidroside(Sa),a small-molecule drug derived from Rhodiola plant,has been proved to enhance the paracrine function of skeletal muscle cells,as well as their migration even under hypoxichyperglycemia.Herein,we investigated whether Sa could improve the survival and migration potentials of MSCs,subsequently enhance the wound healing process under hyperglycemia.Methods MSCs were cultured under three conditions:low glucose,high glucose,and high glucose+Sa.qPCR analysis and western blotting were done to examine the mRNA and protein expression level of several factors which are important in upregulating the wound healing process.MTT colorimetric assay,intracellular ROS detection,and flow cytometry assay were employed to examine the effect of Sa in MSCs survival.Transwell chamber assay,scratch assay,and phalloidin staining were done to elucidate the role of Sa in regulating MSCs migration potential.For in vivo experiment,diabetic wound healing mice model was generated to elucidate the effect of Sa-pretreated MSCs transplantation in wound closure rate,as well as re-epithelization status,observed with hematoxylin and eosin staining.The diabetic wound healing mice model were divided into three groups:1)mice injected with PBS,2)mice transplanted with PBS-pretreated MSCs,and 3)mice transplanted with Sa-pretreated MSCs.Results(1)Hyperglycemic condition induced the generation of ROS and suppressed total cell number of MSCs,while Sa treatment into MSCs restored these hyperglycemia-induced alterations.In line with this,total apoptotic cells were also suppressed by treating MSCs with Sa.The expression level of cell survival factor,heme-oxygenase 1(HO-1),was enhanced in Sa-pretreated MSCs.Further treatment of HO-1 inhibitor into Sa-pretreated MSCs nullified the ROS level and total apoptotic cells,indica-ting the importance of HO-1 in mediating the Sa-induced survival of MSCs under hyperglycemia.(2)Transwell chamber and scratch assay results showed that Sa-pretreated MSCs have a higher migration potential under hyperglycemia,supported by higher F-actin polymerization fractal dimension.Fibroblast growth factor 2(FGF2)and hepatocyte growth factor(HGF)expression level,which are essential factors for cell migration,were also improved in Sa-pretreated MSCs under hyperglycemia.(3)In diabetic wound healing mice model,transplantation of Sa-pretreated MSCs resulted in significantly improved wound closure rate and re-epithelization.The protein levels of HO-1,FGF2,and HGF were also enhanced in the tissues obtained from the wound site of diabetic wound healing mice model which were transplanted with Sa-pretreated MSCs.Conclusions Salidroside pretreatment on MSCs could improve their survival and migration potentials,subsequently promoting wound healing process under hyperglycemia.This prospective MSC-based therapy could serve as a novel strategy to improve diabetic wound healing.
文摘Aim The present study aims to investigate whether BMSCs transplantation may inhibit hypertrophic hearts and its underlying mechanisms. Background There is no evidence so far that Bone marrow-derived mesenchy- mal stem cells (BMSCs) can heal pathological myocardial hypertrophy. Methods To observe the antihypertrophic actions, BMSCs was indirectly cocultured with NRVCs in vitro, or intramyocardially transplanted into hypertrophic hearts in vivo. Results ISO-induced typical hypertrophic characteristics of cardiomyocytes were obviously preven- ted by BMSCs in the co-culture model in vitro and after BMSCs transplantation in vivo. Furthermore, the activation of the Ca2+/calcineurin/NFATc3 hypertrophic pathway was shown abrogated in the presence of BMSCs both in vitro and in vivo. Interestingly, blockage of VEGF release from BMSCs but not bFGF and IGF-1 can abolish the protec- tive effects of BMSCs on cardiomyocytes hypertrophy. Consistently, VEGF administration attenuated ISO-induced BNP and β-MHC expression and the activation of Ca2+/cal- the enlargement of cellular size, the augment of ANP, cineurin/NFATc3 hypertrophic pathway, and these can be abrogated by blocking VEGFR-1, indicating VEGFR-1 is involved in the antihypertrophic role of VEGF. We further find that the ample VEGF secretion contributing to the anti-hypertrophic effects of BMSCs originates from BMSCs interplay with cardiac cells but not BMSCs or cardiomyo- cytes alone. Conclusions Thus, mesenchymal stem cells are able to inhibit myocardial hypertrophy via interacting with cardiomyocytes so as to promote VEGF release which inhibits the activation of the Ca2+/calcineurin/NFATc3 hypertrophic signaling pathway in cardiac cells, in addition to its well-recognized ability to ameliorate myocardial injuries by replacing dead cells.
文摘Aim Aging is an independent risk factor for heart disease, however the effective intervention has not been found so far. Bone marrow mesenchymal stem cells (BMSCs) have been shown to offer a wide variety of cel- lular functions including the protective effects on damaged hearts. Here we investigated the antiaging properties of BMSCs and the underlying mechanism in a cellular model of cardiomyocyte senescence and a rat model of aging hearts. Methods In vitro study, neonatal rat ventricular cells (NRVCs) and BMSCs were cocultured in the same dish with a semipermeable membrane to separate the two populations. In vivo, the BMSCs were injected into the rat hearts to observe their antiaging effects. The expression of β-galactosidase and aging-related proteins, and the lev- els of oxidative stress were determined in vivo and in vitro. The heart function was measured by the High-Resolution Imaging System. Results Monocultured NRVCs displayed the senescence-associated phenotypes, characterized by an increase in the number of β-galaetosidase-positive cells and decreases in the degradation and disappearance of cellular organelles in a time-dependent manner. The levels of reactive oxygen species and malondialdehyde were el- evated, whereas the activities of antioxidant enzymes superoxide dismutase and glutathione peroxidase were de- creased, along with upregulation of p53, p21cipl/wafl and p16INK4a in the aging eardiomyoeytes. These deleterious alterations were abrogated in aging NRVCs cocultured with BMSCs. Qualitatively, the same senescent phenotypes were consistently observed in aging rat hearts. Notably, BMSC transplantation significantly prevented these detri- mental alterations and improved the impaired cardiac function in the aging rats. Conclusions BMSCs possess strong antiseneseence action on the aging NRVCs and hearts and can improve cardiac function after transplantation in aging rats. The present study, therefore, provides an alternative approach for the treatment of heart failure in the elderly population.
文摘Non-alcoholic fatty liver disease(NAFLD)is the most common chronic liver disease,defined by several phases,ranging from benign fat accumulation to non-alcoholic steatohepatitis(NASH),which can lead to liver cancer and cirrhosis.Although NAFLD is a disease of disordered metabolism,it also involves several immune cell-mediated inflammatory processes,either promoting and/or suppressing hepatocyte inflammation through the secretion of pro-inflammatory and/or anti-inflammatory factors to influence the NAFLD process.However,the underlying disease mechanism and the role of immune cells in NAFLD are still under investigation,leaving many open-ended questions.In this review,we presented the recent concepts about the interplay of immune cells in the onset and pathogenesis of NAFLD.We also highlighted the specific non-immune cells exhibiting immunological properties of therapeutic significance in NAFLD.We hope that this review will help guide the development of future NAFLD therapeutics.
基金supported by National Natural Science Foundation of China(81573443,81330081 and 81673444)
文摘Osteoarthritis(OA)is a most common form of degenerative joint disease,primarily characterized by the degradation of articular cartilage,subchondral sclerosis and inflammation of the synovial membrane.Mesenchymal stem cells(MSCs),a multipotent adult stem cell population,can be isolated from many connective tissue lineages,including those of the diarthrodial joint.Joint-resident MSCs or MSC-like progenitor cells contribute to the maintenance of healthy microenvironment or to the response to trauma.The onset of degenerative changes in the joint related to abnormal condition or depletion of these endogenous MSCs and native host hyaline cartilage cells,leading to limited selfrepair potential of the joint and advance of the degradation.To date,no acknowledged medical treatment strategies,including non-operative and classical surgical techniques,are efficient in restoring normal anatomy and function of hyaline cartilage in OA.This highlights an urgent need for better celled-based therapeutic strategies that supplement these functional cel s exogenously to recover the tissue homeostasis and repair in joint cavity via chondrogenic and anti-in fl ammatory functions.In this review we focus on the role of native MSCs in healthy or OA joint and recent progress in cel-based researches utilizing culture-expanded chondrocytes,pluripotent stem cel s,or MSCs from different sources for treating OA.
基金Supported by Strategic Priority Research Program and Frontier Science Key Project of Chinese Academy of Sciences(XDA04020202-17,XDA04020416,XDA15014100QYZDJSSW-JSC018),National Natural Science Foundation of China(U1738115)。
文摘Recent progresses in 2018–2019 from space experiments onboard SJ-10 recoverable satellite and on parabolic flight were summarized,mainly focusing on cell mechano-biological coupling under microgravity.In the meantime,technical pre-research and experimental system design for the biomechanics research platform on China Space Station was carried out and updated.