This paper researches the adaptive scheduling problem of multiple electronic support measures(multi-ESM) in a ground moving radar targets tracking application. It is a sequential decision-making problem in uncertain e...This paper researches the adaptive scheduling problem of multiple electronic support measures(multi-ESM) in a ground moving radar targets tracking application. It is a sequential decision-making problem in uncertain environment. For adaptive selection of appropriate ESMs, we generalize an approximate dynamic programming(ADP) framework to the dynamic case. We define the environment model and agent model, respectively. To handle the partially observable challenge, we apply the unsented Kalman filter(UKF) algorithm for belief state estimation. To reduce the computational burden, a simulation-based approach rollout with a redesigned base policy is proposed to approximate the long-term cumulative reward. Meanwhile, Monte Carlo sampling is combined into the rollout to estimate the expectation of the rewards. The experiments indicate that our method outperforms other strategies due to its better performance in larger-scale problems.展开更多
Unmanned aerial vehicles(UAVs) may play an important role in data collection and offloading in vast areas deploying wireless sensor networks, and the UAV’s action strategy has a vital influence on achieving applicabi...Unmanned aerial vehicles(UAVs) may play an important role in data collection and offloading in vast areas deploying wireless sensor networks, and the UAV’s action strategy has a vital influence on achieving applicability and computational complexity. Dynamic programming(DP) has a good application in the path planning of UAV, but there are problems in the applicability of special terrain environment and the complexity of the algorithm.Based on the analysis of DP, this paper proposes a hierarchical directional DP(DDP) algorithm based on direction determination and hierarchical model. We compare our methods with Q-learning and DP algorithm by experiments, and the results show that our method can improve the terrain applicability, meanwhile greatly reduce the computational complexity.展开更多
A method of minimizing rankings inconsistency is proposed for a decision-making problem with rankings of alternatives given by multiple decision makers according to multiple criteria. For each criteria, at first, the ...A method of minimizing rankings inconsistency is proposed for a decision-making problem with rankings of alternatives given by multiple decision makers according to multiple criteria. For each criteria, at first, the total inconsistency between the rankings of all alternatives for the group and the ones for every decision maker is defined after the decision maker weights in respect to the criteria are considered. Similarly, the total inconsistency between their final rankings for the group and the ones under every criteria is determined after the criteria weights are taken into account. Then two nonlinear integer programming models minimizing respectively the two total inconsistencies above are developed and then transformed to two dynamic programming models to obtain separately the rankings of all alternatives for the group with respect to each criteria and their final rankings. A supplier selection case illustrated the proposed method, and some discussions on the results verified its effectiveness. This work develops a new measurement of ordinal preferences’ inconsistency in multi-criteria group decision-making (MCGDM) and extends the cook-seiford social selection function to MCGDM considering weights of criteria and decision makers and can obtain unique ranking result.展开更多
Replicas can improve the data reliability in distributed system. However, the traditional algorithms for replica management are based on the assumption that all replicas have the uniform reliability, which is inaccura...Replicas can improve the data reliability in distributed system. However, the traditional algorithms for replica management are based on the assumption that all replicas have the uniform reliability, which is inaccurate in some actual systems. To address such problem, a novel algorithm is proposed based on dynamic programming to manage the number and distribution of replicas in different nodes. By using Markov model, replicas management is organized as a multi-phase process, and the recursion equations are provided. In this algorithm, the heterogeneity of nodes, the expense for maintaining replicas and the engaged space have been considered. Under these restricted conditions, this algorithm realizes high data reliability in a distributed system. The results of case analysis prove the feasibility of the algorithm.展开更多
Color inconsistency between views is an important problem to be solved in multi-view video systems. A multi-view video color correction method using dynamic programming is proposed. Three-dimensional histograms are co...Color inconsistency between views is an important problem to be solved in multi-view video systems. A multi-view video color correction method using dynamic programming is proposed. Three-dimensional histograms are constructed with sequential conditional probability in HSI color space. Then, dynamic programming is used to seek the best color mapping relation with the minimum cost path between target image histogram and source image histogram. Finally, video tracking technique is performed to correct multi-view video. Experimental results show that the proposed method can obtain better subjective and objective performance in color correction.展开更多
This paper introduces a self-learning control approach based on approximate dynamic programming. Dynamic programming was introduced by Bellman in the 1950's for solving optimal control problems of nonlinear dynami...This paper introduces a self-learning control approach based on approximate dynamic programming. Dynamic programming was introduced by Bellman in the 1950's for solving optimal control problems of nonlinear dynamical systems. Due to its high computational complexity, the applications of dynamic programming have been limited to simple and small problems. The key step in finding approximate solutions to dynamic programming is to estimate the performance index in dynamic programming. The optimal control signal can then be determined by minimizing (or maximizing) the performance index. Artificial neural networks are very efficient tools in representing the performance index in dynamic programming. This paper assumes the use of neural networks for estimating the performance index in dynamic programming and for generating optimal control signals, thus to achieve optimal control through self-learning.展开更多
An alpha-uniformized Markov chain is defined by the concept of equivalent infinitesimalgenerator for a semi-Markov decision process (SMDP) with both average- and discounted-criteria.According to the relations of their...An alpha-uniformized Markov chain is defined by the concept of equivalent infinitesimalgenerator for a semi-Markov decision process (SMDP) with both average- and discounted-criteria.According to the relations of their performance measures and performance potentials, the optimiza-tion of an SMDP can be realized by simulating the chain. For the critic model of neuro-dynamicprogramming (NDP), a neuro-policy iteration (NPI) algorithm is presented, and the performanceerror bound is shown as there are approximate error and improvement error in each iteration step.The obtained results may be extended to Markov systems, and have much applicability. Finally, anumerical example is provided.展开更多
This paper presents a hierarchical dynamic routing protocol (HDRP) based on the discrete dynamic programming principle. The proposed protocol can adapt to the dynamic and large computer networks (DLCN) with clustering...This paper presents a hierarchical dynamic routing protocol (HDRP) based on the discrete dynamic programming principle. The proposed protocol can adapt to the dynamic and large computer networks (DLCN) with clustering topology. The procedures for realizing routing update and decision are presented in this paper. The proof of correctness and complexity analysis of the protocol are also made. The performance measures of the HDRP including throughput and average message delay are evaluated by using of simulation. The study shows that the HDRP provides a new available approach to the routing decision for DLCN or high speed networks with clustering topology.展开更多
As valuable energy in iron-and steel-making process,by-product gas is widely used in heating and technical processes in steel plant.After being used according to the technical requirements,the surplus by-product gas i...As valuable energy in iron-and steel-making process,by-product gas is widely used in heating and technical processes in steel plant.After being used according to the technical requirements,the surplus by-product gas is usually used for buffer boilers to produce steam.With the rapid development of energy conservation technology and energy consumption level,surplus gas in steel plant continues to get larger.Therefore,it is significant to organize surplus gas among buffer boilers.A dynamic programming model of that issue was established in this work,considering the ramp rate constraint of boilers and the influences of setting gasholders.Then a case study was done.It is shown that dynamic programming dispatch gets more steam generation and less specific gas consumption compared with current proportionate dispatch depending on nominal capacities of boilers.The ignored boiler ramp rate constraint was considered and its contribution to the result validity was pointed out.Finally,the significance of setting gasholders was studied.展开更多
Peta-scale high-perfomlance computing systems are increasingly built with heterogeneous CPU and GPU nodes to achieve higher power efficiency and computation throughput. While providing unprecedented capabilities to co...Peta-scale high-perfomlance computing systems are increasingly built with heterogeneous CPU and GPU nodes to achieve higher power efficiency and computation throughput. While providing unprecedented capabilities to conduct computational experiments of historic significance, these systems are presently difficult to program. The users, who are domain experts rather than computer experts, prefer to use programming models closer to their domains (e.g., physics and biology) rather than MPI and OpenME This has led the development of domain-specific programming that provides domain-specific programming interfaces but abstracts away some performance-critical architecture details. Based on experience in designing large-scale computing systems, a hybrid programming framework for scientific computing on heterogeneous architectures is proposed in this work. Its design philosophy is to provide a collaborative mechanism for domain experts and computer experts so that both domain-specific knowledge and performance-critical architecture details can be adequately exploited. Two real-world scientific applications have been evaluated on TH-IA, a peta-scale CPU-GPU heterogeneous system that is currently the 5th fastest supercomputer in the world. The experimental results show that the proposed framework is well suited for developing large-scale scientific computing applications on peta-scale heterogeneous CPU/GPU systems.展开更多
A novel approach was proposed to allocate spinning reserve for dynamic economic dispatch.The proposed approach set up a two-stage stochastic programming model to allocate reserve.The model was solved using a decompose...A novel approach was proposed to allocate spinning reserve for dynamic economic dispatch.The proposed approach set up a two-stage stochastic programming model to allocate reserve.The model was solved using a decomposed algorithm based on Benders' decomposition.The model and the algorithm were applied to a simple 3-node system and an actual 445-node system for verification,respectively.Test results show that the model can save 84.5 US $ cost for the testing three-node system,and the algorithm can solve the model for 445-node system within 5 min.The test results also illustrate that the proposed approach is efficient and suitable for large system calculation.展开更多
基金supported by the National Natural Science Foundation of China(6157328561305133)
文摘This paper researches the adaptive scheduling problem of multiple electronic support measures(multi-ESM) in a ground moving radar targets tracking application. It is a sequential decision-making problem in uncertain environment. For adaptive selection of appropriate ESMs, we generalize an approximate dynamic programming(ADP) framework to the dynamic case. We define the environment model and agent model, respectively. To handle the partially observable challenge, we apply the unsented Kalman filter(UKF) algorithm for belief state estimation. To reduce the computational burden, a simulation-based approach rollout with a redesigned base policy is proposed to approximate the long-term cumulative reward. Meanwhile, Monte Carlo sampling is combined into the rollout to estimate the expectation of the rewards. The experiments indicate that our method outperforms other strategies due to its better performance in larger-scale problems.
基金supported by the National Natural Science Foundation of China(91648204 61601486)+1 种基金State Key Laboratory of High Performance Computing Project Fund(1502-02)Research Programs of National University of Defense Technology(ZDYYJCYJ140601)
文摘Unmanned aerial vehicles(UAVs) may play an important role in data collection and offloading in vast areas deploying wireless sensor networks, and the UAV’s action strategy has a vital influence on achieving applicability and computational complexity. Dynamic programming(DP) has a good application in the path planning of UAV, but there are problems in the applicability of special terrain environment and the complexity of the algorithm.Based on the analysis of DP, this paper proposes a hierarchical directional DP(DDP) algorithm based on direction determination and hierarchical model. We compare our methods with Q-learning and DP algorithm by experiments, and the results show that our method can improve the terrain applicability, meanwhile greatly reduce the computational complexity.
基金supported by the National Natural Science Foundation of China (60904059 60975049)+1 种基金the Philosophy and Social Science Foundation of Hunan Province (2010YBA104)the National High Technology Research and Development Program of China (863 Program)(2009AA04Z107)
文摘A method of minimizing rankings inconsistency is proposed for a decision-making problem with rankings of alternatives given by multiple decision makers according to multiple criteria. For each criteria, at first, the total inconsistency between the rankings of all alternatives for the group and the ones for every decision maker is defined after the decision maker weights in respect to the criteria are considered. Similarly, the total inconsistency between their final rankings for the group and the ones under every criteria is determined after the criteria weights are taken into account. Then two nonlinear integer programming models minimizing respectively the two total inconsistencies above are developed and then transformed to two dynamic programming models to obtain separately the rankings of all alternatives for the group with respect to each criteria and their final rankings. A supplier selection case illustrated the proposed method, and some discussions on the results verified its effectiveness. This work develops a new measurement of ordinal preferences’ inconsistency in multi-criteria group decision-making (MCGDM) and extends the cook-seiford social selection function to MCGDM considering weights of criteria and decision makers and can obtain unique ranking result.
文摘Replicas can improve the data reliability in distributed system. However, the traditional algorithms for replica management are based on the assumption that all replicas have the uniform reliability, which is inaccurate in some actual systems. To address such problem, a novel algorithm is proposed based on dynamic programming to manage the number and distribution of replicas in different nodes. By using Markov model, replicas management is organized as a multi-phase process, and the recursion equations are provided. In this algorithm, the heterogeneity of nodes, the expense for maintaining replicas and the engaged space have been considered. Under these restricted conditions, this algorithm realizes high data reliability in a distributed system. The results of case analysis prove the feasibility of the algorithm.
基金supported by the National Natural Science Foundation of China (60672073)the Program for New Century Excellent Talents in University (NCET-06-0537)+1 种基金the Natural Science Foundation of Ningbo (2008A610016)the K.C.Wong Magna Fund in Ningbo University.
文摘Color inconsistency between views is an important problem to be solved in multi-view video systems. A multi-view video color correction method using dynamic programming is proposed. Three-dimensional histograms are constructed with sequential conditional probability in HSI color space. Then, dynamic programming is used to seek the best color mapping relation with the minimum cost path between target image histogram and source image histogram. Finally, video tracking technique is performed to correct multi-view video. Experimental results show that the proposed method can obtain better subjective and objective performance in color correction.
基金Supported by National High Technology Research and Development Program of China (863 Program) (2006AA04Z183), National Nat- ural Science Foundation of China (60621001, 60534010, 60572070, 60774048, 60728307), and the Program for Changjiang Scholars and Innovative Research Groups of China (60728307, 4031002)
基金Supported by the National Science Foundation (U.S.A.) under Grant ECS-0355364
文摘This paper introduces a self-learning control approach based on approximate dynamic programming. Dynamic programming was introduced by Bellman in the 1950's for solving optimal control problems of nonlinear dynamical systems. Due to its high computational complexity, the applications of dynamic programming have been limited to simple and small problems. The key step in finding approximate solutions to dynamic programming is to estimate the performance index in dynamic programming. The optimal control signal can then be determined by minimizing (or maximizing) the performance index. Artificial neural networks are very efficient tools in representing the performance index in dynamic programming. This paper assumes the use of neural networks for estimating the performance index in dynamic programming and for generating optimal control signals, thus to achieve optimal control through self-learning.
文摘An alpha-uniformized Markov chain is defined by the concept of equivalent infinitesimalgenerator for a semi-Markov decision process (SMDP) with both average- and discounted-criteria.According to the relations of their performance measures and performance potentials, the optimiza-tion of an SMDP can be realized by simulating the chain. For the critic model of neuro-dynamicprogramming (NDP), a neuro-policy iteration (NPI) algorithm is presented, and the performanceerror bound is shown as there are approximate error and improvement error in each iteration step.The obtained results may be extended to Markov systems, and have much applicability. Finally, anumerical example is provided.
文摘This paper presents a hierarchical dynamic routing protocol (HDRP) based on the discrete dynamic programming principle. The proposed protocol can adapt to the dynamic and large computer networks (DLCN) with clustering topology. The procedures for realizing routing update and decision are presented in this paper. The proof of correctness and complexity analysis of the protocol are also made. The performance measures of the HDRP including throughput and average message delay are evaluated by using of simulation. The study shows that the HDRP provides a new available approach to the routing decision for DLCN or high speed networks with clustering topology.
基金Project(L2012082)supported by the Science and Technology Research Funds of Liaoning Provincial Education Department,China
文摘As valuable energy in iron-and steel-making process,by-product gas is widely used in heating and technical processes in steel plant.After being used according to the technical requirements,the surplus by-product gas is usually used for buffer boilers to produce steam.With the rapid development of energy conservation technology and energy consumption level,surplus gas in steel plant continues to get larger.Therefore,it is significant to organize surplus gas among buffer boilers.A dynamic programming model of that issue was established in this work,considering the ramp rate constraint of boilers and the influences of setting gasholders.Then a case study was done.It is shown that dynamic programming dispatch gets more steam generation and less specific gas consumption compared with current proportionate dispatch depending on nominal capacities of boilers.The ignored boiler ramp rate constraint was considered and its contribution to the result validity was pointed out.Finally,the significance of setting gasholders was studied.
基金Project(61170049) supported by the National Natural Science Foundation of ChinaProject(2012AA010903) supported by the National High Technology Research and Development Program of China
文摘Peta-scale high-perfomlance computing systems are increasingly built with heterogeneous CPU and GPU nodes to achieve higher power efficiency and computation throughput. While providing unprecedented capabilities to conduct computational experiments of historic significance, these systems are presently difficult to program. The users, who are domain experts rather than computer experts, prefer to use programming models closer to their domains (e.g., physics and biology) rather than MPI and OpenME This has led the development of domain-specific programming that provides domain-specific programming interfaces but abstracts away some performance-critical architecture details. Based on experience in designing large-scale computing systems, a hybrid programming framework for scientific computing on heterogeneous architectures is proposed in this work. Its design philosophy is to provide a collaborative mechanism for domain experts and computer experts so that both domain-specific knowledge and performance-critical architecture details can be adequately exploited. Two real-world scientific applications have been evaluated on TH-IA, a peta-scale CPU-GPU heterogeneous system that is currently the 5th fastest supercomputer in the world. The experimental results show that the proposed framework is well suited for developing large-scale scientific computing applications on peta-scale heterogeneous CPU/GPU systems.
基金Projects(51007047,51077087)supported by the National Natural Science Foundation of ChinaProject(2013CB228205)supported by the National Key Basic Research Program of China+1 种基金Project(20100131120039)supported by Higher Learning Doctor Discipline End Scientific Research Fund of the Ministry of Education Institution,ChinaProject(ZR2010EQ035)supported by the Natural Science Foundation of Shandong Province,China
文摘A novel approach was proposed to allocate spinning reserve for dynamic economic dispatch.The proposed approach set up a two-stage stochastic programming model to allocate reserve.The model was solved using a decomposed algorithm based on Benders' decomposition.The model and the algorithm were applied to a simple 3-node system and an actual 445-node system for verification,respectively.Test results show that the model can save 84.5 US $ cost for the testing three-node system,and the algorithm can solve the model for 445-node system within 5 min.The test results also illustrate that the proposed approach is efficient and suitable for large system calculation.