期刊文献+
共找到572篇文章
< 1 2 29 >
每页显示 20 50 100
Multi-objective fuzzy particle swarm optimization based on elite archiving and its convergence 被引量:1
1
作者 Wei Jingxuan Wang Yuping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期1035-1040,共6页
A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy glob... A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy global best and fuzzy personal best are given on basis of the new operator. After that, particle updating equations are revised on the basis of the two new concepts to discourage the premature convergence and enlarge the potential search space; second, the elite archiving technique is used during the process of evolution, namely, the elite particles are introduced into the swarm, whereas the inferior particles are deleted. Therefore, the quality of the swarm is ensured. Finally, the convergence of this swarm is proved. The experimental results show that the nondominated solutions found by the proposed algorithm are uniformly distributed and widely spread along the Pareto front. 展开更多
关键词 multi-objective optimization particle swarm optimization fuzzy personal best fuzzy global best elite archiving.
在线阅读 下载PDF
A hybrid discrete particle swarm optimization-genetic algorithm for multi-task scheduling problem in service oriented manufacturing systems 被引量:4
2
作者 武善玉 张平 +2 位作者 李方 古锋 潘毅 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期421-429,共9页
To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was establis... To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was established, and then a hybrid discrete particle swarm optimization-genetic algorithm(HDPSOGA) was proposed. In SOMS, each resource involved in the whole life cycle of a product, whether it is provided by a piece of software or a hardware device, is encapsulated into a service. So, the transportation during production of a task should be taken into account because the hard-services selected are possibly provided by various providers in different areas. In the service allocation optimization mathematical model, multi-task and transportation were considered simultaneously. In the proposed HDPSOGA algorithm, integer coding method was applied to establish the mapping between the particle location matrix and the service allocation scheme. The position updating process was performed according to the cognition part, the social part, and the previous velocity and position while introducing the crossover and mutation idea of genetic algorithm to fit the discrete space. Finally, related simulation experiments were carried out to compare with other two previous algorithms. The results indicate the effectiveness and efficiency of the proposed hybrid algorithm. 展开更多
关键词 service-oriented architecture (SOA) cyber physical systems (CPS) multi-task scheduling service allocation multi-objective optimization particle swarm algorithm
在线阅读 下载PDF
Immune particle swarm optimization of linear frequency modulation in acoustic communication 被引量:4
3
作者 Haipeng Ren Yang Zhao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期450-456,共7页
With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels beca... With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels because it suffers from more serious multipath effect, fewer available bandwidths and quite complex noise. Since the signals experience a serious distortion after being transmitted through the underwater acoustic channel, the underwater acoustic communication experiences a high bit error rate (BER). To solve this problem, carrier waveform inter- displacement (CWlD) modulation is proposed. It has been proved that CWlD modulation is an effective method to decrease BER. The linear frequency modulation (LFM) carrier-waves are used in CWlD modulation. The performance of the communication using CWID modulation is sensitive to the change of the frequency band of LFM carrier-waves. The immune particle swarm optimization (IPSO) is introduced to search for the optimal frequency band of the LFM carrier-waves, due to its excellent performance in solving complicated optimization problems. The multi-objective and multi- peak optimization nature of the IPSO gives a suitable description of the relationship between the upper band and the lower band of the LFM carrier-waves. Simulations verify the improved perfor- mance and effectiveness of the optimization method. 展开更多
关键词 underwater acoustic communication carrier waveform inter-displacement (CWlD) multi-objective optimization immune particle swarm optimization (IPSO).
在线阅读 下载PDF
Multi-objective workflow scheduling in cloud system based on cooperative multi-swarm optimization algorithm 被引量:2
4
作者 YAO Guang-shun DING Yong-sheng HAO Kuang-rong 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第5期1050-1062,共13页
In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired ... In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired by division of the same species into multiple swarms for different objectives and information sharing among these swarms in nature, each physical machine in the data center is considered a swarm and employs improved multi-objective particle swarm optimization to find out non-dominated solutions with one objective in MSMOOA. The particles in each swarm are divided into two classes and adopt different strategies to evolve cooperatively. One class of particles can communicate with several swarms simultaneously to promote the information sharing among swarms and the other class of particles can only exchange information with the particles located in the same swarm. Furthermore, in order to avoid the influence by the elastic available resources, a manager server is adopted in the cloud data center to collect the available resources for scheduling. The quality of the proposed method with other related approaches is evaluated by using hybrid and parallel workflow applications. The experiment results highlight the better performance of the MSMOOA than that of compared algorithms. 展开更多
关键词 multi-objective WORKFLOW scheduling multi-swarm optimization particle swarm optimization (PSO) CLOUD computing system
在线阅读 下载PDF
Particle swarm optimization algorithm for simultaneous optimal placement and sizing of shunt active power conditioner(APC)and shunt capacitor in harmonic distorted distribution system
5
作者 Mohammadi Mohammad 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第9期2035-2048,共14页
Due to development of distribution systems and increase in electricity demand,the use of capacitor banks increases.From the other point of view,nonlinear loads generate and inject considerable harmonic currents into p... Due to development of distribution systems and increase in electricity demand,the use of capacitor banks increases.From the other point of view,nonlinear loads generate and inject considerable harmonic currents into power system.Under this condition if capacitor banks are not properly selected and placed in the power system,they could amplify and propagate these harmonics and deteriorate power quality to unacceptable levels.With attention of disadvantages of passive filters,such as occurring resonance,nowadays the usage of this type of harmonic compensator is restricted.On the other side,one of parallel multi-function compensating devices which are recently used in distribution system to mitigate voltage sag and harmonic distortion,performs power factor correction,and improves the overall power quality as active power conditioner(APC).Therefore,the utilization of APC in harmonic distorted system can affect and change the optimal location and size of shunt capacitor bank under harmonic distortion condition.This paper presents an optimization algorithm for improvement of power quality using simultaneous optimal placement and sizing of APC and shunt capacitor banks in radial distribution networks in the presence of voltage and current harmonics.The algorithm is based on particle swarm optimization(PSO).The objective function includes the cost of power losses,energy losses and those of the capacitor banks and APCs. 展开更多
关键词 shunt capacitor banks active power conditioner multi-objective function particle swarm optimization (PSO) harmonic distorted distribution system
在线阅读 下载PDF
Dynamic modeling and parameter identification of a gun saddle ring 被引量:5
6
作者 Tong Lin Lin-fang Qian +2 位作者 Qiang Yin Shi-yu Chen Tai-su Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第2期325-333,共9页
In this study,a theoretical nonlinear dynamic model was established for a saddle ring based on a dynamic force analysis of the launching process and the structure according to contact-impact theory.The ADAMS software ... In this study,a theoretical nonlinear dynamic model was established for a saddle ring based on a dynamic force analysis of the launching process and the structure according to contact-impact theory.The ADAMS software was used to build a parameterized dynamic model of the saddle ring.A parameter identification method for the ring was proposed based on the particle swarm optimization algorithm.A loading test was designed and performed several times at different elevation angles.The response histories of the saddle ring with different loads were then obtained.The parameters of the saddle ring dynamic model were identified from statistics generated at a 500 elevation angle to verify the feasibility and accuracy of the proposed method.The actual loading history of the ring at a 70°elevation angle was taken as the model input.The response histories of the ring under these working conditions were obtained through a simulation.The simulation results agreed with the actual response.Thus,the effectiveness and applicability of the proposed dynamic model were verified,and it provides an effective method for modeling saddle rings. 展开更多
关键词 GUN SADDLE RING dynamic response PARAMETER identification particle swarm optimization
在线阅读 下载PDF
Resource allocation optimization of equipment development task based on MOPSO algorithm 被引量:8
7
作者 ZHANG Xilin TAN Yuejin and YANG Zhiwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第6期1132-1143,共12页
Resource allocation for an equipment development task is a complex process owing to the inherent characteristics,such as large amounts of input resources,numerous sub-tasks,complex network structures,and high degrees ... Resource allocation for an equipment development task is a complex process owing to the inherent characteristics,such as large amounts of input resources,numerous sub-tasks,complex network structures,and high degrees of uncertainty.This paper presents an investigation into the influence of resource allocation on the duration and cost of sub-tasks.Mathematical models are constructed for the relationships of the resource allocation quantity with the duration and cost of the sub-tasks.By considering the uncertainties,such as fluctuations in the sub-task duration and cost,rework iterations,and random overlaps,the tasks are simulated for various resource allocation schemes.The shortest duration and the minimum cost of the development task are first formulated as the objective function.Based on a multi-objective particle swarm optimization(MOPSO)algorithm,a multi-objective evolutionary algorithm is constructed to optimize the resource allocation scheme for the development task.Finally,an uninhabited aerial vehicle(UAV)is considered as an example of a development task to test the algorithm,and the optimization results of this method are compared with those based on non-dominated sorting genetic algorithm-II(NSGA-II),non-dominated sorting differential evolution(NSDE)and strength pareto evolutionary algorithm-II(SPEA-II).The proposed method is verified for its scientific approach and effectiveness.The case study shows that the optimization of the resource allocation can greatly aid in shortening the duration of the development task and reducing its cost effectively. 展开更多
关键词 resource allocation equipment development task multi-objective particle swarm optimization(MOPSO) develop ment task simulation.
在线阅读 下载PDF
Multi-objective reconfigurable production line scheduling for smart home appliances 被引量:2
8
作者 LI Shiyun ZHONG Sheng +4 位作者 PEI Zhi YI Wenchao CHEN Yong WANG Cheng ZHANG Wenzhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期297-317,共21页
In a typical discrete manufacturing process,a new type of reconfigurable production line is introduced,which aims to help small-and mid-size enterprises to improve machine utilization and reduce production cost.In ord... In a typical discrete manufacturing process,a new type of reconfigurable production line is introduced,which aims to help small-and mid-size enterprises to improve machine utilization and reduce production cost.In order to effectively handle the production scheduling problem for the manufacturing system,an improved multi-objective particle swarm optimization algorithm based on Brownian motion(MOPSO-BM)is proposed.Since the existing MOPSO algorithms are easily stuck in the local optimum,the global search ability of the proposed method is enhanced based on the random motion mechanism of the BM.To further strengthen the global search capacity,a strategy of fitting the inertia weight with the piecewise Gaussian cumulative distribution function(GCDF)is included,which helps to maintain an excellent convergence rate of the algorithm.Based on the commonly used indicators generational distance(GD)and hypervolume(HV),we compare the MOPSO-BM with several other latest algorithms on the benchmark functions,and it shows a better overall performance.Furthermore,for a real reconfigurable production line of smart home appliances,three algorithms,namely non-dominated sorting genetic algorithm-II(NSGA-II),decomposition-based MOPSO(dMOPSO)and MOPSO-BM,are applied to tackle the scheduling problem.It is demonstrated that MOPSO-BM outperforms the others in terms of convergence rate and quality of solutions. 展开更多
关键词 reconfigurable production line improved particle swarm optimization(PSO) multi-objective optimization flexible flowshop scheduling smart home appliances
在线阅读 下载PDF
采用动态种群策略的多目标粒子群优化算法 被引量:1
9
作者 杜睿山 井远光 +3 位作者 付晓飞 孟令东 张豪鹏 王紫珊 《吉林大学学报(理学版)》 北大核心 2025年第3期845-854,共10页
针对多目标粒子群优化算法中多样性和收敛性难以平衡的问题,提出一种基于动态种群的多目标粒子群优化算法.该算法种群数量的增加或减少取决于档案中的资源,从而调节种群数量.一方面,通过基于网格技术的局部扰动添加粒子,以增加粒子的局... 针对多目标粒子群优化算法中多样性和收敛性难以平衡的问题,提出一种基于动态种群的多目标粒子群优化算法.该算法种群数量的增加或减少取决于档案中的资源,从而调节种群数量.一方面,通过基于网格技术的局部扰动添加粒子,以增加粒子的局部搜索能力,提高算法的多样性;另一方面,为防止种群规模过度增长,利用非支配排序和种群密度控制种群规模,以加快算法搜索进度,避免过早收敛.选取5种对比算法在测试函数上进行实验,实验结果表明,该算法具有明显的多样性和收敛性优势. 展开更多
关键词 动态种群 粒子群优化 多目标优化 多样性 收敛性
在线阅读 下载PDF
自适应混合粒子群优化DMC及其在脱硫系统中的应用
10
作者 王惠杰 李绍鑫 +1 位作者 许小刚 秦志明 《华北电力大学学报(自然科学版)》 北大核心 2025年第4期125-133,142,共10页
为提高脱硫系统动态矩阵算法(DMC)的控制精度,使控制器参数能够自动寻优,提出采用自适应混合粒子群算法优化DMC中的参数。首先以粒子群算法为基础,加入自适应权重和局部因子构建自适应混合粒子群,并通过Griewank函数验证自适应混合粒子... 为提高脱硫系统动态矩阵算法(DMC)的控制精度,使控制器参数能够自动寻优,提出采用自适应混合粒子群算法优化DMC中的参数。首先以粒子群算法为基础,加入自适应权重和局部因子构建自适应混合粒子群,并通过Griewank函数验证自适应混合粒子群的寻优性能;接着搭建DMC模型,使用自适应混合粒子群算法对DMC的控制时域、优化时域等参数进行迭代寻优,最后以浆液密度和机组负荷作为干扰因素对脱硫系统进行控制仿真及抗干扰测试。以某电厂600 MW机组配置脱硫塔浆液pH值为研究对象,将电厂实际运行数据作为输入检验控制系统特性。仿真结果表明:与传统PID控制以及Smith预估控制相比,自适应混合粒子群优化DMC控制下浆液pH值上升时间更短,控制更集中,波动范围小,在设定值±0.02范围内覆盖率达到99.41%。 展开更多
关键词 自适应混合粒子群算法 动态矩阵 PH值 控制优化
在线阅读 下载PDF
K9玻璃磁流变抛光材料去除效率的动态预测与工艺优化
11
作者 卢明明 刘宇强 +2 位作者 林洁琼 杨亚坤 孙少毅 《机械科学与技术》 北大核心 2025年第1期59-66,共8页
该研究旨在精确预测磁流变抛光K9玻璃加工过程中的材料去除率,并找到最佳工艺参数组合。采用了响应面法(RSM)与粒子群优化算法(PSO)相结合的方法建立了材料去除率预测模型,并进行了最优工艺参数的搜索。首先,利用响应面法构建了动态预... 该研究旨在精确预测磁流变抛光K9玻璃加工过程中的材料去除率,并找到最佳工艺参数组合。采用了响应面法(RSM)与粒子群优化算法(PSO)相结合的方法建立了材料去除率预测模型,并进行了最优工艺参数的搜索。首先,利用响应面法构建了动态预测模型,将工件转速、偏摆速度和工作间隙作为输入,K9玻璃的材料去除率作为输出,并研究了工艺参数与材料去除率之间的交互影响。随后,利用粒子群优化算法进行全局寻优,并通过实验验证了最优工艺参数。结果表明:构建的动态预测模型具有高精度,相关系数R^(2)=0.9887,调整决定系数R_(adj)^(2)=0.9388。各工艺参数与材料去除率均存在交互作用,但工件转速与工作间隙的交互作用影响最小。粒子群优化算法寻优得到的最佳工艺参数组合为:工件转速600 r/min、偏摆速度102 mm/min、工作间隙2.5 mm。预测的K9玻璃的材料去除率为0.739μm/min,实际为0.719μm/min,误差仅为2.8%。该研究为磁流变抛光K9玻璃的材料去除效率动态预测及工艺参数优化提供了一定的指导意义。 展开更多
关键词 K9 磁流变抛光 响应曲面法 粒子群优化算法 材料去除率 动态预测
在线阅读 下载PDF
异构差分进化混合动态分级粒子群的任务分配方法研究
12
作者 杨玉 李颖 +1 位作者 李建军 耿超龙 《计算机工程与应用》 北大核心 2025年第20期157-169,共13页
物流运输中任务分配环节在现代供应链中起着至关重要的作用,合理高效的任务分配策略对于提升整体配送效率和资源利用水平具有重要意义。针对传统粒子群优化算法在求解物流运输任务分配问题时存在动态适应性弱,易陷入局部最优和搜索能力... 物流运输中任务分配环节在现代供应链中起着至关重要的作用,合理高效的任务分配策略对于提升整体配送效率和资源利用水平具有重要意义。针对传统粒子群优化算法在求解物流运输任务分配问题时存在动态适应性弱,易陷入局部最优和搜索能力不均衡等问题,提出一种异构差分进化混合动态分级粒子群优化的任务分配方法,用于解决复杂的物流运输任务分配问题。采用两种差分进化突变体,在不同进化阶段平衡种群的探索与开发;引入分级粒子群框架,依据粒子适应度动态划分种群层次,并通过竞争-协作机制在不同粒子层级之间实现高效信息传递,增强全局搜索能力;同时结合参数动态调整机制增强物流运输任务分配的全局搜索能力。将所提算法与多种优化算法分别在不同规模的30个测试用例和现实物流运输数据集“Amazon Delivery Dataset”上进行对比实验,验证了异构差分进化混合动态分级粒子群算法能够更高效地解决物流运输任务分配问题,并且在路径优化、收敛速度和解的稳定性方面均表现出更优性能。 展开更多
关键词 异构差分进化 混合动态分级 粒子群优化算法 任务分配方法
在线阅读 下载PDF
考虑动态载荷变化的大型风力机叶片气动形状优化
13
作者 汪泉 王振海 张浩然 《可再生能源》 北大核心 2025年第8期1037-1043,共7页
针对大型风力机运行时叶片动态载荷变化幅度大导致疲劳载荷过大的问题,文章提出了基于动态载荷极小与功率输出极大的风力机叶片优化方法。考虑我国某近海风资源特性,利用OpenFAST计算时域风机的动态载荷变化,通过约束叶根动态拍打弯矩... 针对大型风力机运行时叶片动态载荷变化幅度大导致疲劳载荷过大的问题,文章提出了基于动态载荷极小与功率输出极大的风力机叶片优化方法。考虑我国某近海风资源特性,利用OpenFAST计算时域风机的动态载荷变化,通过约束叶根动态拍打弯矩极差及叶尖拍打幅值,利用Python编制程序并耦合OpenFAST对IEA 15 MW风力机叶片进行气动外形优化。优化结果显示:在低风速工况下,优化叶片的动态气动效率在时域范围内整体提高,同时叶根弯矩及叶尖位移均整体减小,有利于降低叶片疲劳载荷;优化叶片的时域平均功率输出增加1.455%,平均叶根拍打弯矩和叶尖拍打位移分别减小4.609%和6.397%,叶根拍打弯矩极差及叶尖拍打幅值明显降低。优化结果对降低叶片疲劳载荷具有重要的参考意义。 展开更多
关键词 动态优化设计 粒子群算法 OpenFAST 气弹响应 动态载荷
在线阅读 下载PDF
基于INSPSO-INC算法的光伏MPPT控制策略
14
作者 陈刚 刘旭阳 +1 位作者 李国雄 刘亚雄 《智慧电力》 北大核心 2025年第2期58-64,共7页
在部分阴影条件(PSC)下,光伏阵列呈现高度非线性的功率-电压特性。针对经典粒子群算法(PSO)易陷入局部最优、输出稳定后出现功率波动等问题,提出一种基于改进的自然选择粒子群算法(INSPSO)结合增量电导法(INC)的光伏最大功率点追踪(MPPT... 在部分阴影条件(PSC)下,光伏阵列呈现高度非线性的功率-电压特性。针对经典粒子群算法(PSO)易陷入局部最优、输出稳定后出现功率波动等问题,提出一种基于改进的自然选择粒子群算法(INSPSO)结合增量电导法(INC)的光伏最大功率点追踪(MPPT)控制策略。研究引入动态惯性权重、异步学习因子和自然选择机制,在分析寻优过程中对惯性权重和学习因子实时调整,并对群体进行自然选择操作以提高算法的全局寻优性能。仿真分析表明,所提算法在收敛速度和精度方面优势明显,且在追踪到最大功率点后的输出功率更平稳。 展开更多
关键词 光伏阵列 MPPT 动态部分遮阴 自然选择粒子群算法
在线阅读 下载PDF
分布式制造场景下的多类型生产服务资源动态配置
15
作者 裴植 吕珊珊 +1 位作者 胡盈盈 张聿 《计算机集成制造系统》 北大核心 2025年第10期3721-3732,共12页
在制造业服务化模式下,针对制造订单的高波动和时变特性,构建了一种面向多类型生产服务的排队网络模型,用以解决分布式制造场景下具有系统性能约束的资源配置优化问题,以保证制造资源的合理使用及制造服务水平的稳定可控。由于多类型生... 在制造业服务化模式下,针对制造订单的高波动和时变特性,构建了一种面向多类型生产服务的排队网络模型,用以解决分布式制造场景下具有系统性能约束的资源配置优化问题,以保证制造资源的合理使用及制造服务水平的稳定可控。由于多类型生产的价格、服务速率、放弃成本和放弃速率具有异构性,采用Tent混沌映射初始化种群,引入基于排队系统状态自适应调整的惯性权重和学习因子,并融入模拟退火算法的Metropolis准则,提出了一种多策略改进的粒子群算法(MIPSO),以实现制造资源的合理配置并最大化制造平台利润。此外,研究发现分布式制造平台在资源配置时须考虑企业和用户的预算限制并设定合适的资源上限。最后,通过数值实验证明了所提模型与算法的有效性,为分布式制造服务网络的资源配置提供了理论支持与管理洞见。 展开更多
关键词 分布式制造 排队网络模型 资源动态配置 粒子群算法 模拟退火算法
在线阅读 下载PDF
基于AIPSO的传感器网络动态节点部署策略 被引量:1
16
作者 俞垚魏 李云龙 +2 位作者 岳川 袁伟 李艳峰 《传感技术学报》 北大核心 2025年第2期322-331,共10页
利用传感器网络对任务区域进行监测是保障区域安全稳定的重要手段。多传感器组建的覆盖网络可为区域提供高效的感知和通信服务。理想的传感器部署策略是实现网络覆盖最大化的必要条件。当部分固定传感器功能失效导致监测区域出现覆盖空... 利用传感器网络对任务区域进行监测是保障区域安全稳定的重要手段。多传感器组建的覆盖网络可为区域提供高效的感知和通信服务。理想的传感器部署策略是实现网络覆盖最大化的必要条件。当部分固定传感器功能失效导致监测区域出现覆盖空洞,可以通过调整周围可移动传感器实施快速修复。首先建立了传感器网络节点部署模型。其次,针对传感器网络节点部署特征,提出了基于人工免疫机制的粒子群优化算法(Artificial Immune-based Particle Swarm Optimization,AIPSO),提高了种群的多样性,解决了传统优化算法中容易出现的早熟收敛和局部最优值问题,提升了节点部署效率。仿真结果表明,与传统粒子群算法(Particle Swarm Optimization,PSO)、基于量子行为的粒子群优化算法(Quantum Particle Swarm Optimization,QPSO)以及改进的免疫粒子群算法(Improved Immune Particle Swarm Optimization,IIPSO)相比,AIPSO算法从整体上减少了动态传感器的移动距离,同时能够最大程度地保持传感器网络的覆盖率和节点覆盖效率。 展开更多
关键词 传感器网络 动态节点 部署策略 人工免疫 粒子群优化
在线阅读 下载PDF
冶金自备电厂燃气发电机组机炉协调控制 被引量:1
17
作者 安硕 冯旭刚 +5 位作者 张景 王正兵 唐得志 沈浩 王兵 宋爱国 《中南大学学报(自然科学版)》 北大核心 2025年第1期19-33,共15页
针对冶金自备电厂燃料热值、压力和负荷多变的复杂工况与发电机组燃烧、汽机系统存在的大滞后、扰动大、多变量问题,首先通过改进粒子群算法(improved particle swarm optimization,IPSO)辨识得到以汽轮机调节阀开度与燃料量为控制量、... 针对冶金自备电厂燃料热值、压力和负荷多变的复杂工况与发电机组燃烧、汽机系统存在的大滞后、扰动大、多变量问题,首先通过改进粒子群算法(improved particle swarm optimization,IPSO)辨识得到以汽轮机调节阀开度与燃料量为控制量、有功功率与主蒸汽压力为被控量的单元机组数学模型;其次,设计多变量动态矩阵控制策略,构建机炉协调控制器,通过在线预测、反馈校正实现对系统进行滚动优化,并转换为内模控制结构分析其动态特性;最后,得到基于多变量动态矩阵控制(multivariable dynamic matrix control,MDMC)的燃气发电机组机炉协调控制策略。研究结果表明:相较于常规PSO,IPSO输出曲线拟合效果具有更高的准确性;与模型预测控制、广义预测控制、比例积分微分控制相比,MDMC具有更好的抗干扰性和动态性能,系统在受到干扰时调节时间最短为112 s,超调量仅为1.81%。应用机炉协调控制系统后,有功功率与主蒸汽压力标准偏差分别降低48.03%和33.33%,在满足现场设计要求的同时更有利于工业生产。 展开更多
关键词 变负荷工况 机炉协调控制系统 改进粒子群算法 多变量动态矩阵控制 稳定性 抗干扰性
在线阅读 下载PDF
云网融合环境下组合服务的动态重构
18
作者 刘坤 张鹏程 +1 位作者 金惠颖 吉顺慧 《计算机工程》 北大核心 2025年第5期206-218,共13页
随着云计算与空天地海一体化通信网络的深度融合,各种复杂应用场景的出现使得组合服务的种类和数量急剧增多,结构也变得复杂。在云网融合环境下,用户移动设备和边缘服务器等硬件能力有限,能耗问题成为组合服务进行动态重构不可忽略的重... 随着云计算与空天地海一体化通信网络的深度融合,各种复杂应用场景的出现使得组合服务的种类和数量急剧增多,结构也变得复杂。在云网融合环境下,用户移动设备和边缘服务器等硬件能力有限,能耗问题成为组合服务进行动态重构不可忽略的重要因素。此外,传统方法并未考虑空天地海不同场景下用户对不同服务质量(QoS)属性需求的差异性,使得组合服务的交付结果并不令人满意。为了解决上述问题,提出一种基于多目标粒子群优化(PSO)的组合服务动态重构方法。该方法首先根据重构原子服务的三维空间地理位置和功能进行聚类,有效解决在云网融合环境下服务规模庞大情况下的搜索空间爆炸问题;然后通过能耗计算模型得到服务调用的综合能耗,并将其作为动态重构的优化目标之一,结合服务的多种QoS属性进行多目标寻优,最终生成符合用户需求且能耗较低的重构方案。实验结果表明,该方法在云网融合环境下节约能耗和应对较大候选服务集规模等方面具有较优性能。 展开更多
关键词 云网融合 多目标粒子群优化算法 组合服务 动态重构 服务质量
在线阅读 下载PDF
动态多群粒子群优化稀疏分解在薄涂层超声测厚中的应用
19
作者 刘易奕 黄华 +3 位作者 王志刚 王海涛 卢超 李秋锋 《振动与冲击》 北大核心 2025年第1期61-69,共9页
基于稀疏分解匹配追踪算法将装配式钢结构防护涂层超声检测信号表示在过完备Gabor时频库中,进一步提取涂层的时域信息来获得涂层的厚度信息。针对匹配追踪算法复杂度高、计算量庞大的问题,利用动态多群粒子群算法收敛快寻优能力强的特... 基于稀疏分解匹配追踪算法将装配式钢结构防护涂层超声检测信号表示在过完备Gabor时频库中,进一步提取涂层的时域信息来获得涂层的厚度信息。针对匹配追踪算法复杂度高、计算量庞大的问题,利用动态多群粒子群算法收敛快寻优能力强的特性对匹配追踪算法进行优化。基于混沌策略生成惯性权重,并将学习因子和惯性权重通过三角函数关系联立在一起,而在位置更新中增加时间因子和混沌扰动策略的影响因素,平衡了算法的局部寻优和全局寻优能力。仿真与试验表明,改进后的算法检测精度得到较大提升,能够满足实际应用,并且极大地提升了稀疏分解运算的效率,与金相检测结果对比,防火涂层检测相对误差为-4.65%,防腐涂层的检测相对误差为1.33%。 展开更多
关键词 防护涂层 超声检测 稀疏分解 混沌扰动 动态多群粒子群优化(DMS-PSO)
在线阅读 下载PDF
高压压电作动器动态迟滞特性建模及参数辨识方法研究
20
作者 李伟光 刘珂 +2 位作者 王慧 邓庆田 杨智春 《西北工业大学学报》 北大核心 2025年第3期610-619,共10页
高压压电作动器因其具有负载能力强、标称推力大、响应速度快等优点而被广泛应用于航空、航天结构振动主动控制领域。然而,其固有的迟滞特性会直接影响压电主动控制系统的效能和稳定性。针对高压压电作动器迟滞特性建模及参数辨识问题,... 高压压电作动器因其具有负载能力强、标称推力大、响应速度快等优点而被广泛应用于航空、航天结构振动主动控制领域。然而,其固有的迟滞特性会直接影响压电主动控制系统的效能和稳定性。针对高压压电作动器迟滞特性建模及参数辨识问题,提出了一种基于Hammerstein模型和改进型自适应粒子群算法的压电作动器动态迟滞特性建模及参数辨识方法。采用非对称Bouc-Wen模型描述静态迟滞效应,进一步结合传递函数模型,构造了高压压电作动器的Hammerstein率相关动态迟滞模型。基于非线性递减惯性权重策略和动态学习因子,提出了一种改进型自适应粒子群算法,并使用高压压电作动器迟滞特性测试实验数据辨识得到了迟滞模型参数,验证了所提算法相较于传统粒子群算法的优越性。通过高压压电作动器迟滞效应预测实验,验证了所建立的Hammerstein模型可以高效预测动态迟滞效应,且在关心频带内对于作动器驱动电压频率和幅值的改变具有很强的适应性。 展开更多
关键词 高压压电作动器 动态迟滞 粒子群算法 HAMMERSTEIN模型 系统辨识
在线阅读 下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部