In order to reveal the photosynthetic characteristics of C. trichotomum responses to drought, salt and water-logging stresses, one-year-old potted seedlings were taken as materials, and the several stresses including ...In order to reveal the photosynthetic characteristics of C. trichotomum responses to drought, salt and water-logging stresses, one-year-old potted seedlings were taken as materials, and the several stresses including natural drought, submergence stress, water-logging and different salt treatments (0.2%, 0.4%, 0.6% and 0.8% NaCl) were carried out on August 15, 2012. The morphological and photosynthetic characteristics were observed and determined. The results showed that adverse enviromental stress had a significant effect on the morphological changes and photosynthetic characteristics of C. trichotomum. On the 14th day after natural drought, the leaves wilted and could not recovery at night, and 60% of the seedlings could recover after re-watering. From the 7th day to the 10th day after submergence stress treatment, the 2nd and the 3rd leaves at the base of 60% seedling turned yellow and the lenticels were observed. At the early stage of water-logging stress, white lenticels appeared at the base of seedlings, and the leaves wilted, chlorina and fallen off on the 8th day. A large number of leaves fallen off under 0.6% NaCl or more salt stress, and even the whole plant died. The chlorophyll content, net photosynthetic rate (Pn) and transpiration rate (Tr) decreased gradually with the stress process, such as 8 days after natural drought, less than 0.4% salt stress and water-logging stress, but the changes were not significant compared with those of the control. With the increase of the stress intensity and the prolonged time, the changes of photosynthetic index were significant. All the results indicated that C. trichotomum had a certain degree of tolerance to drought, water and salt, but it was not suitable for living, in water-logging condition for a long time.展开更多
【Objective】This study aimed to clarify the key pathways and related genes of taro leaves in response to drought stress,analyze the gene expression patterns under drought conditions,and explore the molecular response...【Objective】This study aimed to clarify the key pathways and related genes of taro leaves in response to drought stress,analyze the gene expression patterns under drought conditions,and explore the molecular response mecha‐nisms.The findings would provide theoretical references for understanding the molecular mechanisms of taro’s drought regulation and for breeding different drought tolerant taro varieties in the future.【Method】Using Lipu taro as the experi‐mental material,leaf samples were collected after consecutive 7 d of drought treatment as the treatment group,while leaf samples from plants watered daily served as the control group.Transcriptome sequencing was performed to identify dif‐ferentially expressed genes,which were then subjected to GO functional annotation and KEGG pathway enrichment analysis.【Result】Under drought stress,there were 1613 differentially expressed genes(DEGs),including 1043 upregulated and 570 down-regulated genes.GO functional annotation analysis revealed that the DEGs were categorized into three major functional groups:molecular function,cellular component,and biological process.In the molecular function category,DEGs were annotated to binding and catalytic activity.In the cellular component category,DEGs were anno‐tated to cellular anatomical entities and protein-containing complexes.In the biological process category,DEGs were an‐notated to cellular processes and metabolic processes.KEGG signaling pathway enrichment analysis showed that 85.00%of the DEGs were enriched in metabolic pathway.Among these,the DEGs were primarily enriched in the glutathione me‐tabolism pathway and the starch and sucrose metabolism pathway,with 11 and 19 DEGs identified in each pathway re‐spectively.Under drought stress,a total of 112 differentially expressed transcription factors(TFs)were identified,mainly including members of the bHLH,ERF,WRKY and NAC families.Among all differentially expressed TFs,82.14%showed up-regulated transcription levels under drought conditions.Plant hormone signal transduction,carotenoid biosynthesis,and the MAPK signaling pathway-plant were identified as key abscisic acid-responsive pathways involved in drought response,influencing stomatal closure in taro leaves and seed dormancy to cope with drought stress.The reliability of the transcriptome data was confirmed by quantitative real-time PCR analysis.【Conclusion】Under drought stress,the gene expression in the glutathione metabolism pathway,the starch and sucrose metabolism pathway,and transcription factors in taro leaves is affected.Most TFs are positively involved in regulating taro plant’s drought response.展开更多
The situation of global warming imparts negative impacts on crop growth and development.Cotton is the most important fiber crop around the globe.However,frequent drought episodes pose serious threats to cotton product...The situation of global warming imparts negative impacts on crop growth and development.Cotton is the most important fiber crop around the globe.However,frequent drought episodes pose serious threats to cotton production worldwide.Due to the complex genetic structure of drought tolerance,the development of a tolerant cultivar is cumbersome via conventional breeding.Multiple omics techniques have appeared as successful tool for cotton improvement in drought tolerance.Advanced omics-based biotechniques have paved the way for generation of omics data like transcriptomics,genomics,metabolomics and proteomics,which greatly expand the knowledge of cotton response to drought stress.Omics methodologies and have provided ways for the identification of quantitative trait loci(QTLs),gene regulatory networks,and other regulatory pathways against drought stress in cotton.These resources could speed up the discovery and incorporation of drought tolerant traits in the elite genotypes.The genome wide association study(GWAS),gene-editing system CRISPER/Cas9,gene silencing through RNAi are efficient tools to explore the molecular mechanism of drought tolerance and facilitate the identification of mechanisms and candidate genes for the improvement of drought tolerance in cotton.展开更多
In order to determine the physiological mechanism of drought resistance of northern wheat in China,six drought resistant wheat and one sensitivity to drought wheat were planted in pots.They were subjected to drought t...In order to determine the physiological mechanism of drought resistance of northern wheat in China,six drought resistant wheat and one sensitivity to drought wheat were planted in pots.They were subjected to drought treatment and normal water when the plants grew to the 3-leaf stage.Samples were collected at 10,20,30,and 40 days after the drought treatment,respectively.The electrical conductivity,photosynthetic parameters,chlorophyll fluorescence parameters,sugar content,proline content,protein content,and active oxygen scavenging enzyme activity of the plants were detected,and the agronomic traits of the wheat varieties were investigated at maturity.The results indicated that the phenotype and yield-related factors of Darkhan 144 changed little under the drought stress.The relative electrical conductivity of Kefeng 6 and Darkhan 166 was lower under the drought stress,and their cell membrane was less damaged.The Darkhan 144 and Darkhan 166 had higher drought resistance coefficients,and were the wheat varieties with stronger drought resistance.However,the physiological mechanisms of drought resistance of these three wheat were different:Darkhan 144 maintained a higher photosynthetic activity under the drought stress;Darkhan 166 maintained a higher protein content,photosynthetic activity and active oxygen scavenging enzyme activity.In addition,other drought-resistant varieties Kefeng 6,Kefeng 10 and Longmai 26 had a higher content of osmoregulatory substances under the drought stress.展开更多
This study was to investigate the effects of three exogenous substances on chemical constituents of Isatis indigotica leavesand their efficacy in alleviating drought stress, and explore the methods of applying exogeno...This study was to investigate the effects of three exogenous substances on chemical constituents of Isatis indigotica leavesand their efficacy in alleviating drought stress, and explore the methods of applying exogenous substances to efficient cultivationof Isatis indigotica. Polyethylene glycol (PEG) was used to simulate drought stress to deal with seeds of Isatis indigotica at thegermination stage (concentration: 0, 10%, 15%, and 20%). Simultaneous operation of exogenous growth regulators [microbialinoculum (MI), γ-aminobutyric acid (GABA) and salicylic acid (SA)] and PEG were implemented in seeds of Isatis indigotica.The effects of drought stress and the mitigation of exogenous substances were observed by statistics of seed germination potential,germination rate, hypocotyl length, and radicle length of each treatment. The effects of exogenous substances on the content ofalkaloids, crude protein and free amino acids in the leaves of Isatis indigotica grown in a greenhouse were determined after sprayingexogenous substances on the plants. The differences of germination potential, germination rate, hypocotyl length, and radicle lengthamong 15% PEG stress treatment, 10% PEG stress treatment and the control were significant (P<0.05). According to the predesignedgermination standard, the seeds did not germinate under 20% PEG stress treatment. When the PEG concentration was 15%, the resultsof seed germination potential and germination rate after adding MI were significantly different from those under stress alone (P<0.05).When exposed to 10% PEG stress, the supplementation of GABA led to a notable increase in radicle length of Isatis indigotica seeds,showing significant differences compared to other three treatments. The application of MI and GABA under 15% PEG stress resultedin a significant increase in the radicle and hypocotyl length of Isatis indigotica seeds compared to other two treatments. The contentof the total alkaloids in leaves of Isatis indigotica was significantly increased after spraying GABA. Meanwhile, the contents of crudeprotein and the total free amino acids were kept constant after spraying exogenous substances. Application of MI and GABA couldalleviate drought stress of Isatis indigotica. The content of the total alkaloids in leaves of Isatis indigotica could significantly increaseafter spraying GABA.展开更多
基金Supported by the Major Scientific Research Projects of the 12th Five-year National Public welfare Industry(201104002-6)
文摘In order to reveal the photosynthetic characteristics of C. trichotomum responses to drought, salt and water-logging stresses, one-year-old potted seedlings were taken as materials, and the several stresses including natural drought, submergence stress, water-logging and different salt treatments (0.2%, 0.4%, 0.6% and 0.8% NaCl) were carried out on August 15, 2012. The morphological and photosynthetic characteristics were observed and determined. The results showed that adverse enviromental stress had a significant effect on the morphological changes and photosynthetic characteristics of C. trichotomum. On the 14th day after natural drought, the leaves wilted and could not recovery at night, and 60% of the seedlings could recover after re-watering. From the 7th day to the 10th day after submergence stress treatment, the 2nd and the 3rd leaves at the base of 60% seedling turned yellow and the lenticels were observed. At the early stage of water-logging stress, white lenticels appeared at the base of seedlings, and the leaves wilted, chlorina and fallen off on the 8th day. A large number of leaves fallen off under 0.6% NaCl or more salt stress, and even the whole plant died. The chlorophyll content, net photosynthetic rate (Pn) and transpiration rate (Tr) decreased gradually with the stress process, such as 8 days after natural drought, less than 0.4% salt stress and water-logging stress, but the changes were not significant compared with those of the control. With the increase of the stress intensity and the prolonged time, the changes of photosynthetic index were significant. All the results indicated that C. trichotomum had a certain degree of tolerance to drought, water and salt, but it was not suitable for living, in water-logging condition for a long time.
基金National Natural Science Foundation of China(32460756)Guangxi Key Research and Development Project(Guike AB20297041)+1 种基金Science and Technology Development Fund of Guangxi Academy of Agricultural Sciences(Gui‐nongke 2022JM58)Guangxi Lipu Taro Experimental Station Projec(tTS202113)。
文摘【Objective】This study aimed to clarify the key pathways and related genes of taro leaves in response to drought stress,analyze the gene expression patterns under drought conditions,and explore the molecular response mecha‐nisms.The findings would provide theoretical references for understanding the molecular mechanisms of taro’s drought regulation and for breeding different drought tolerant taro varieties in the future.【Method】Using Lipu taro as the experi‐mental material,leaf samples were collected after consecutive 7 d of drought treatment as the treatment group,while leaf samples from plants watered daily served as the control group.Transcriptome sequencing was performed to identify dif‐ferentially expressed genes,which were then subjected to GO functional annotation and KEGG pathway enrichment analysis.【Result】Under drought stress,there were 1613 differentially expressed genes(DEGs),including 1043 upregulated and 570 down-regulated genes.GO functional annotation analysis revealed that the DEGs were categorized into three major functional groups:molecular function,cellular component,and biological process.In the molecular function category,DEGs were annotated to binding and catalytic activity.In the cellular component category,DEGs were anno‐tated to cellular anatomical entities and protein-containing complexes.In the biological process category,DEGs were an‐notated to cellular processes and metabolic processes.KEGG signaling pathway enrichment analysis showed that 85.00%of the DEGs were enriched in metabolic pathway.Among these,the DEGs were primarily enriched in the glutathione me‐tabolism pathway and the starch and sucrose metabolism pathway,with 11 and 19 DEGs identified in each pathway re‐spectively.Under drought stress,a total of 112 differentially expressed transcription factors(TFs)were identified,mainly including members of the bHLH,ERF,WRKY and NAC families.Among all differentially expressed TFs,82.14%showed up-regulated transcription levels under drought conditions.Plant hormone signal transduction,carotenoid biosynthesis,and the MAPK signaling pathway-plant were identified as key abscisic acid-responsive pathways involved in drought response,influencing stomatal closure in taro leaves and seed dormancy to cope with drought stress.The reliability of the transcriptome data was confirmed by quantitative real-time PCR analysis.【Conclusion】Under drought stress,the gene expression in the glutathione metabolism pathway,the starch and sucrose metabolism pathway,and transcription factors in taro leaves is affected.Most TFs are positively involved in regulating taro plant’s drought response.
文摘The situation of global warming imparts negative impacts on crop growth and development.Cotton is the most important fiber crop around the globe.However,frequent drought episodes pose serious threats to cotton production worldwide.Due to the complex genetic structure of drought tolerance,the development of a tolerant cultivar is cumbersome via conventional breeding.Multiple omics techniques have appeared as successful tool for cotton improvement in drought tolerance.Advanced omics-based biotechniques have paved the way for generation of omics data like transcriptomics,genomics,metabolomics and proteomics,which greatly expand the knowledge of cotton response to drought stress.Omics methodologies and have provided ways for the identification of quantitative trait loci(QTLs),gene regulatory networks,and other regulatory pathways against drought stress in cotton.These resources could speed up the discovery and incorporation of drought tolerant traits in the elite genotypes.The genome wide association study(GWAS),gene-editing system CRISPER/Cas9,gene silencing through RNAi are efficient tools to explore the molecular mechanism of drought tolerance and facilitate the identification of mechanisms and candidate genes for the improvement of drought tolerance in cotton.
基金the National Ministry of Science and Technology Key Project(2018YFE0123300)the National Modern Agricultural Wheat Industry Technology System Keshan Comprehensive Test Station(CARS‒03‒54)the Collaborative Innovation and Extension System of Modern Agricultural Wheat in Heilongjiang Province。
文摘In order to determine the physiological mechanism of drought resistance of northern wheat in China,six drought resistant wheat and one sensitivity to drought wheat were planted in pots.They were subjected to drought treatment and normal water when the plants grew to the 3-leaf stage.Samples were collected at 10,20,30,and 40 days after the drought treatment,respectively.The electrical conductivity,photosynthetic parameters,chlorophyll fluorescence parameters,sugar content,proline content,protein content,and active oxygen scavenging enzyme activity of the plants were detected,and the agronomic traits of the wheat varieties were investigated at maturity.The results indicated that the phenotype and yield-related factors of Darkhan 144 changed little under the drought stress.The relative electrical conductivity of Kefeng 6 and Darkhan 166 was lower under the drought stress,and their cell membrane was less damaged.The Darkhan 144 and Darkhan 166 had higher drought resistance coefficients,and were the wheat varieties with stronger drought resistance.However,the physiological mechanisms of drought resistance of these three wheat were different:Darkhan 144 maintained a higher photosynthetic activity under the drought stress;Darkhan 166 maintained a higher protein content,photosynthetic activity and active oxygen scavenging enzyme activity.In addition,other drought-resistant varieties Kefeng 6,Kefeng 10 and Longmai 26 had a higher content of osmoregulatory substances under the drought stress.
基金the Doctoral Research Initiation Foundation of Changzhi Medical College(BS202005)。
文摘This study was to investigate the effects of three exogenous substances on chemical constituents of Isatis indigotica leavesand their efficacy in alleviating drought stress, and explore the methods of applying exogenous substances to efficient cultivationof Isatis indigotica. Polyethylene glycol (PEG) was used to simulate drought stress to deal with seeds of Isatis indigotica at thegermination stage (concentration: 0, 10%, 15%, and 20%). Simultaneous operation of exogenous growth regulators [microbialinoculum (MI), γ-aminobutyric acid (GABA) and salicylic acid (SA)] and PEG were implemented in seeds of Isatis indigotica.The effects of drought stress and the mitigation of exogenous substances were observed by statistics of seed germination potential,germination rate, hypocotyl length, and radicle length of each treatment. The effects of exogenous substances on the content ofalkaloids, crude protein and free amino acids in the leaves of Isatis indigotica grown in a greenhouse were determined after sprayingexogenous substances on the plants. The differences of germination potential, germination rate, hypocotyl length, and radicle lengthamong 15% PEG stress treatment, 10% PEG stress treatment and the control were significant (P<0.05). According to the predesignedgermination standard, the seeds did not germinate under 20% PEG stress treatment. When the PEG concentration was 15%, the resultsof seed germination potential and germination rate after adding MI were significantly different from those under stress alone (P<0.05).When exposed to 10% PEG stress, the supplementation of GABA led to a notable increase in radicle length of Isatis indigotica seeds,showing significant differences compared to other three treatments. The application of MI and GABA under 15% PEG stress resultedin a significant increase in the radicle and hypocotyl length of Isatis indigotica seeds compared to other two treatments. The contentof the total alkaloids in leaves of Isatis indigotica was significantly increased after spraying GABA. Meanwhile, the contents of crudeprotein and the total free amino acids were kept constant after spraying exogenous substances. Application of MI and GABA couldalleviate drought stress of Isatis indigotica. The content of the total alkaloids in leaves of Isatis indigotica could significantly increaseafter spraying GABA.