Breakage is an important step in the resource processing chain.However,the mechanical crushing methods commonly used today suffer from low energy efficiency and high dust levels.Promoting environmental protection and ...Breakage is an important step in the resource processing chain.However,the mechanical crushing methods commonly used today suffer from low energy efficiency and high dust levels.Promoting environmental protection and improving energy efficiency are crucial to advancing China’s circular economy.Mining companies are actively exploring novel and innovative technologies to significantly cut down on operating costs and minimize emissions of dust and pollutants generated during processing.Recently,high voltage pulse discharge(HVPD)technology has received widespread attention and has been reported to have good application prospects in resource processing.This paper presents an extensive review of the operational principles of HVPD and the unique characteristics it engenders,such as non-polluting,selective material fragmentation,pre-weakening,pre-concentration,and enhanced permeability of coal seams.Additionally,this review explores the potential and obstacles confronting HVPD in industrial contexts,offering fresh insights for HVPD optimization and providing guidance and prospects for industrial deployment and further development.展开更多
A certain number of charges are deposited on the surface of high-voltage solar array because of effects of space plasma,high-energy charged particles,and solar illumination,hence the surface is charged.Phenomena of el...A certain number of charges are deposited on the surface of high-voltage solar array because of effects of space plasma,high-energy charged particles,and solar illumination,hence the surface is charged.Phenomena of electrostatic discharge(ESD) occur on the surface when the deposited charges exceed a threshold amount.In this paper,the mechanism of this ESD is discussed.The ground simulation experiment of the ESD using spacecraft material under surface charging is described,and a novel ESD protecting method for high-voltage solar array,i.e.an active protecting method based on the local strong electric field array is proposed.The results show that the reversal potential gradient field between the cover surface and the substrate materials of high-voltage solar array is a triggering factor for the ESD on the array.The threshold voltage for the ESD occurring on the surface is about 500 V.The charged particles could be deflected using the electric field active protecting method,and hence the ESD on the surface is avoided even when the voltage on the conductor array increases to a certain value.These results pave the way for further developing the protecting measures for high-voltage solar arrays.展开更多
The valve side windings of converter transformers bear AC, DC, impulse, and reversal-polarity voltages during operation, which could result in serious insulation problems of the equipment. By performing experiments wi...The valve side windings of converter transformers bear AC, DC, impulse, and reversal-polarity voltages during operation, which could result in serious insulation problems of the equipment. By performing experiments with surface discharge model of oil-paper insula- tion at 80 ℃ under combined AC-DC voltage for 200 h, we studied the spectrums and statistical parameters of partial discharges at different discharge stages. Furthermore, some fingerprint parameters were calculated in order to estimate the development situation of par- tial discharge, while the characteristic gases dissolved in the transformer oil were measured by gas chromatography. The surface discharges in the experiments were observed using a high speed camera, and a full discharge process could be marked off into four stages as follows. ①The elementary stage. When a partial discharge occurs near electrodes, electrical charges are injected into the region near electrodes and causing bubble generation. ②Due to their high resistivity and low dielectric constant, the bubbles would bare the major part of the voltage applied to samples. Therefore, discharge happens inside the small bubbles, and it emits a lot of light. ③Micromolecules of gas are produced in discharge, and further ionization in the transformer oil takes place simultaneously when high-energy electrons collide with oil molecules. ④The carrier charge moves forward to electrodes driven by the applied electric field, till they neutralize with the charge from electrodes, and hence discharge channels are formed subsequently.展开更多
For dielectric barrier discharge(DBD)driven by AC voltage in helium at atmospheric,the relationship between the breakdown voltage and the driving frequency is experimentally investigated using a pair of parallel elect...For dielectric barrier discharge(DBD)driven by AC voltage in helium at atmospheric,the relationship between the breakdown voltage and the driving frequency is experimentally investigated using a pair of parallel electrodes.The gap between the electrodes is 1 mm,4 mm,7 mm,and 10 mm,respectively.Meanwhile with an increment of 2 kHz,the applied AC voltage varies from 12 kHz to 30 kHz.In each experiment,the driving voltage increases slowly,till the helium-filled gap breaks down.Based on a number of experimental results and further analyses,conclusions are obtained as follows.(1)For a small gap(1 mm),the voltage that triggers the first breakdown(Uf)is close to the one that sustains steady breakdowns(Us).However,in the larger gaps(4,7,and 10 mm),Uf is obviously larger than Us.(2)For a fixed gap,Uf does not change significantly with the driving frequency,whereas in the gaps except the 1 mm one,Us drastically decreases with the increase of driving frequency.(3)The motion of residual space charges and the dissipation of positive column,two reasonable factors that explains asymmetrical discharges,are also main reasons for the effect of the driving frequency on the breakdown voltages.展开更多
Electrical discharge milling(ED-milling) can be a good choice for titanium alloys machining and it was proven that its machining efficiency can be improved to compete with mechanical cutting. In order to improve energ...Electrical discharge milling(ED-milling) can be a good choice for titanium alloys machining and it was proven that its machining efficiency can be improved to compete with mechanical cutting. In order to improve energy utilization efficiency of ED-milling process, unstable arc discharge and stable arc discharge combined with normal discharge were implemented for material removal by adjusting servo control strategy. The influence of electrode rotating speed and dielectric flushing pressure on machining performance was investigated by experiments. It was found that the rotating of electrode could move the position of discharge plasma channel, and high pressure flushing could wash melted debris out the discharge gap effectively. Both electrode rotating motion and high pressure flushing are contributed to the improvement of machining efficiency.展开更多
The space charge behavior of a dielectric under HVDC is influenced by the charge trap energy distribution in it. Hence, we in- vestigated the charge trap distributions in several kinds of typical polymer materials usi...The space charge behavior of a dielectric under HVDC is influenced by the charge trap energy distribution in it. Hence, we in- vestigated the charge trap distributions in several kinds of typical polymer materials using thermally stimulated discharge (TSD) and photo-stimulated discharge (PSD) methods, respectively. The experimental results show that,there is a significant difference between the trap energy distributions obtained by the two methods, but the difference decreases with the increase of the melting point of polymers. This is attributed to the change of the trap center environment during TSD caused by the increasing movements of both main chains and branched chains in polymers. PSD method is more accurate for investigating charge trap distribution in dielectrics, especially for polymers with low melting points.展开更多
Based on vibration signal of high voltage circuit breaker,a new method of intelligent fault diagnosis that wavelet packet extracts energy entropy which are used as characteristic vector of the support vector machine(S...Based on vibration signal of high voltage circuit breaker,a new method of intelligent fault diagnosis that wavelet packet extracts energy entropy which are used as characteristic vector of the support vector machine(SVM)to construct classifier for fault diagnosis is presented.The acceleration sensors are applied to collecting the vibration data of different states of high voltage circuit breakers based on self-made experimental platform in this method.The wavelet packet are fully applied to analyze the vibration signal and decompose vibration signal into three layers,and wavelet packet energy entropy of each frequency band are as the characteristic vector of circuit breaker failure mode.Then the intelligent diagnosis network is established on the basis of the support vector machine theory.It is verified that the method has a better capability of classification and a higher accuracy compared with the traditional neural network diagnosis method through distinguishing the three fault modes which are tripping device stuck,the vacuum arcing chamber fixed bolt looseness and too much friction force of the transmission mechanism of circuit breaker in this paper.展开更多
The influence mechanism of a small amount of SF6 on ozone generation in oxygen or air discharge is investigated.Some results are obtained by probing into the number of the high-energy electrons,which have the sufficie...The influence mechanism of a small amount of SF6 on ozone generation in oxygen or air discharge is investigated.Some results are obtained by probing into the number of the high-energy electrons,which have the sufficiency energy for generating ozone.Introducing a small amount of SF6 into oxygen sharply decreases the number of high-energy electrons,because the electron density decreases sharply while the mean electron energy remains constant due to higher breakdown voltage and lower discharge power,and some high-energy electrons are consumed by the excitation and attachment of SF6.In contrast,when a small amount of SF6 is added into dry air discharge,despite the consumption of the excitation and attachment of SF6,the number of high energy electrons increases sharply,which is attributed to the higher mean electron energy and electron density resulted from higher breakdown voltage and discharge power.When the volume fraction of SF6 increases from 0 to 2.22%,the ozone mass concentration and the ozone yield increase by 45.7% and 29.7%,respectively.Therefore,though the oxygen source should avoid the presence of SF6,adding a small amount of SF6 can improve the ozone mass concentration and the efficiency of ozone generation.展开更多
Corona discharge is being detected by UV imaging detection technology at home and abroad in recent years.This technology is used in the corona tests of conductor bundles in this paper.In order to further research the ...Corona discharge is being detected by UV imaging detection technology at home and abroad in recent years.This technology is used in the corona tests of conductor bundles in this paper.In order to further research the corona characteristic,optimize geometry parameters and diameter of sub-conductor,and increase corona onset voltage of transmission lines,corona tests of three model conductors which are placed inside the outdoor corona cage are conducted.Corona cage could be used to simulate the corona activities on transmission lines under a low voltage and different conditions in an effective and economical way.Photon which was created by UV light as a result of corona discharge on conductors is detected by the UV detection apparatus.The photon number within unit interval,namely photon counting rate is adopted as the parameter of quantifying the intensity of corona discharge.According to the apparent change of photon number,corona onset voltage can be judged.All tests are conducted under almost same atmosphere condition.Using the method,corona onset voltage is acquired.The results indicate that the tests have a good repeatability,in other words,repeating same test twice same result can be aquired.The corona onset voltage can be acquired exactly from the curve of applied voltage vs.photon counting rate.Therefore UV detection apparatus can not only used to find discharge point exactly,but also applied on corona discharge research and live detection for power equipments.The method using in this paper is proved that is a new available method.展开更多
Partial discharge (PD) under a sequence of high-repetition-rate square pulses is one of the key factors leading to premature failure of insulation systems of inverter-fed motors. Polyimide (PI) film is an important ty...Partial discharge (PD) under a sequence of high-repetition-rate square pulses is one of the key factors leading to premature failure of insulation systems of inverter-fed motors. Polyimide (PI) film is an important type of insulating material used in the inverter-fed motors. In this paper, micro-morphology and structure change of PI film aged by bipolar continuous square impulse voltage (BCSIV) with ampli- tude above partial discharge inception voltage (PDIV) are investigated by scanning electron microscope (SEM). The chemical bonds of PI chain are analyzed through Fourier transform infrared spectroscopy (FTIR). The results show that the degradation mechanism of PI film is the fracturing of chemical bonds caused by the erosion from PDs. Three layers are displayed in both 100 HN film and 100 CR film. The de- gradation path of PI film is initiated from surface and then gradually extends to the interior with continuous aging. Nano-fillers can retard the degradation of PI film and prolong its lifetime.展开更多
The mechanism of micro-hollow cathode discharge at atmospheric pressure is investigated through simulations using two-dimensional fluid model combined with a transport model for metastable atoms.In the simulations,ele...The mechanism of micro-hollow cathode discharge at atmospheric pressure is investigated through simulations using two-dimensional fluid model combined with a transport model for metastable atoms.In the simulations,electric potential,electric field,particle density,and mean electron energy of the discharge are calculated.The results show that the two characteristic regions of the discharge,i.e.cathode drop and negative glow can be distinguished in the simulation.The cathode drop is characterized by strong electric field and high mean electron energy,while quasi-neutral plasma of high density and exists in the negative glow.The peak value of electron density can reach the order of 1017cm-3.The electron temperature varies from several eV to tens of eV.The influence of cathode dimension on the discharge characteristics is also investigated.展开更多
For developing ultra-high voltage(UHV) AC power transmission systems,it is important to precisely estimate and to limit the radio interference(RI) level of power lines.Based on the stochastic characteristics in amplit...For developing ultra-high voltage(UHV) AC power transmission systems,it is important to precisely estimate and to limit the radio interference(RI) level of power lines.Based on the stochastic characteristics in amplitude and repetition rate of induced corona current,by using the probability theory and mathematical statistics,we establish a stochastic model for the wide-sense stationary random process of corona discharges.Then combining the stochastic model with model-propagation-analysis method,the RI levels under three-phase UHV AC transmission lines are calculated.The results of the calculation based on stochastic model method and International Council on Large Electric Systems(CIGRE) excitation function are compared with that based on semi-empirical method and some other excitation functions.The stochastic model based on different excitation functions is also adopted to simulate the RI levels under finite test lines with two opened terminations.The results indicate that with the same average maximum gradient on conductor surface and the same conductor type,the number of corona discharge per unit length is one of the main reasons that causes the difference between different excitation functions.It is also concluded that for a long test line,the effect of standing wave on RI field strength is negligible in the middle of the line,but obvious near both terminations: for a 10-km line,the maximum difference in RI field strength is 2.78 dB,between the peak value of the standing wave near the ends and the steady value near the middle of the line.展开更多
基金Foundation item:Project(2023YFC2909000) supported by the National Key R&D Program for Young Scientists,ChinaProject(2023JH3/10200010) supported by the Excellent Youth Natural Science Foundation of Liaoning Province,China+3 种基金Project (XLYC2203167) supported by the Liaoning Revitalization Talents Program,ChinaProject(RC231175) supported by the Mid-career and Young Scientific and Technological Talents Program of Shenyang,ChinaProject(2023A03003-2) supported by the Key Special Program of Xinjiang,ChinaProject(N2301026) supported by the Fundamental Research Funds for the Central Universities,China。
文摘Breakage is an important step in the resource processing chain.However,the mechanical crushing methods commonly used today suffer from low energy efficiency and high dust levels.Promoting environmental protection and improving energy efficiency are crucial to advancing China’s circular economy.Mining companies are actively exploring novel and innovative technologies to significantly cut down on operating costs and minimize emissions of dust and pollutants generated during processing.Recently,high voltage pulse discharge(HVPD)technology has received widespread attention and has been reported to have good application prospects in resource processing.This paper presents an extensive review of the operational principles of HVPD and the unique characteristics it engenders,such as non-polluting,selective material fragmentation,pre-weakening,pre-concentration,and enhanced permeability of coal seams.Additionally,this review explores the potential and obstacles confronting HVPD in industrial contexts,offering fresh insights for HVPD optimization and providing guidance and prospects for industrial deployment and further development.
基金Project supported by National Natural Science Foundation of China(51177173), Elec- tromagnetic Environment Effect Key Laboratory Foundation(9140C87010313 JB34004).
文摘A certain number of charges are deposited on the surface of high-voltage solar array because of effects of space plasma,high-energy charged particles,and solar illumination,hence the surface is charged.Phenomena of electrostatic discharge(ESD) occur on the surface when the deposited charges exceed a threshold amount.In this paper,the mechanism of this ESD is discussed.The ground simulation experiment of the ESD using spacecraft material under surface charging is described,and a novel ESD protecting method for high-voltage solar array,i.e.an active protecting method based on the local strong electric field array is proposed.The results show that the reversal potential gradient field between the cover surface and the substrate materials of high-voltage solar array is a triggering factor for the ESD on the array.The threshold voltage for the ESD occurring on the surface is about 500 V.The charged particles could be deflected using the electric field active protecting method,and hence the ESD on the surface is avoided even when the voltage on the conductor array increases to a certain value.These results pave the way for further developing the protecting measures for high-voltage solar arrays.
基金supported by National High-tech Research and Development Program of China(863 Program)(2009AA04Z416) National Science Foundation of China(51021005) Scientific Innovation of Colleges and Universities(Project v-200704)
基金Project supported by National Basic Research Program of China(973 Program) (2011CB 209400)Program of State Key Laboratory of Power Systems for ±1 100 kV UHVDC Technology(SKLD10M09)
文摘The valve side windings of converter transformers bear AC, DC, impulse, and reversal-polarity voltages during operation, which could result in serious insulation problems of the equipment. By performing experiments with surface discharge model of oil-paper insula- tion at 80 ℃ under combined AC-DC voltage for 200 h, we studied the spectrums and statistical parameters of partial discharges at different discharge stages. Furthermore, some fingerprint parameters were calculated in order to estimate the development situation of par- tial discharge, while the characteristic gases dissolved in the transformer oil were measured by gas chromatography. The surface discharges in the experiments were observed using a high speed camera, and a full discharge process could be marked off into four stages as follows. ①The elementary stage. When a partial discharge occurs near electrodes, electrical charges are injected into the region near electrodes and causing bubble generation. ②Due to their high resistivity and low dielectric constant, the bubbles would bare the major part of the voltage applied to samples. Therefore, discharge happens inside the small bubbles, and it emits a lot of light. ③Micromolecules of gas are produced in discharge, and further ionization in the transformer oil takes place simultaneously when high-energy electrons collide with oil molecules. ④The carrier charge moves forward to electrodes driven by the applied electric field, till they neutralize with the charge from electrodes, and hence discharge channels are formed subsequently.
基金supported by National High-tech Research and Development Program of China(863 Program)(2009AA04Z416) National Science Foundation of China(51021005) Scientific Innovation of Colleges and Universities(200704)
基金Project supported by Fundamental Research Fund for the Central Universities of Ministry of Education of China(2011ZM0016)State Key Laboratory of Electrical Insulation and Power Equipment(EIPE10210)
文摘For dielectric barrier discharge(DBD)driven by AC voltage in helium at atmospheric,the relationship between the breakdown voltage and the driving frequency is experimentally investigated using a pair of parallel electrodes.The gap between the electrodes is 1 mm,4 mm,7 mm,and 10 mm,respectively.Meanwhile with an increment of 2 kHz,the applied AC voltage varies from 12 kHz to 30 kHz.In each experiment,the driving voltage increases slowly,till the helium-filled gap breaks down.Based on a number of experimental results and further analyses,conclusions are obtained as follows.(1)For a small gap(1 mm),the voltage that triggers the first breakdown(Uf)is close to the one that sustains steady breakdowns(Us).However,in the larger gaps(4,7,and 10 mm),Uf is obviously larger than Us.(2)For a fixed gap,Uf does not change significantly with the driving frequency,whereas in the gaps except the 1 mm one,Us drastically decreases with the increase of driving frequency.(3)The motion of residual space charges and the dissipation of positive column,two reasonable factors that explains asymmetrical discharges,are also main reasons for the effect of the driving frequency on the breakdown voltages.
基金Project(MSV-2013-09)supported by State Key Laboratory of Mechanical System and Vibration,China
文摘Electrical discharge milling(ED-milling) can be a good choice for titanium alloys machining and it was proven that its machining efficiency can be improved to compete with mechanical cutting. In order to improve energy utilization efficiency of ED-milling process, unstable arc discharge and stable arc discharge combined with normal discharge were implemented for material removal by adjusting servo control strategy. The influence of electrode rotating speed and dielectric flushing pressure on machining performance was investigated by experiments. It was found that the rotating of electrode could move the position of discharge plasma channel, and high pressure flushing could wash melted debris out the discharge gap effectively. Both electrode rotating motion and high pressure flushing are contributed to the improvement of machining efficiency.
基金Project supported by National Natural Science Foundation of China (51077101, 51277133), National Basic Research Program of China (973 Program) (2009CB 724505).
文摘The space charge behavior of a dielectric under HVDC is influenced by the charge trap energy distribution in it. Hence, we in- vestigated the charge trap distributions in several kinds of typical polymer materials using thermally stimulated discharge (TSD) and photo-stimulated discharge (PSD) methods, respectively. The experimental results show that,there is a significant difference between the trap energy distributions obtained by the two methods, but the difference decreases with the increase of the melting point of polymers. This is attributed to the change of the trap center environment during TSD caused by the increasing movements of both main chains and branched chains in polymers. PSD method is more accurate for investigating charge trap distribution in dielectrics, especially for polymers with low melting points.
基金Project Supported by National Natural Science Foundation of China(51177104)Liaoning Province Natural Science Foundation of China(201102169)
文摘Based on vibration signal of high voltage circuit breaker,a new method of intelligent fault diagnosis that wavelet packet extracts energy entropy which are used as characteristic vector of the support vector machine(SVM)to construct classifier for fault diagnosis is presented.The acceleration sensors are applied to collecting the vibration data of different states of high voltage circuit breakers based on self-made experimental platform in this method.The wavelet packet are fully applied to analyze the vibration signal and decompose vibration signal into three layers,and wavelet packet energy entropy of each frequency band are as the characteristic vector of circuit breaker failure mode.Then the intelligent diagnosis network is established on the basis of the support vector machine theory.It is verified that the method has a better capability of classification and a higher accuracy compared with the traditional neural network diagnosis method through distinguishing the three fault modes which are tripping device stuck,the vacuum arcing chamber fixed bolt looseness and too much friction force of the transmission mechanism of circuit breaker in this paper.
基金Project supported by National Natural Science Foundation of China (11105067, 51366012), Jiangxi Province Young Scientists (Jinggang Star) Cultivation Plan (20133BCB23008).
文摘The influence mechanism of a small amount of SF6 on ozone generation in oxygen or air discharge is investigated.Some results are obtained by probing into the number of the high-energy electrons,which have the sufficiency energy for generating ozone.Introducing a small amount of SF6 into oxygen sharply decreases the number of high-energy electrons,because the electron density decreases sharply while the mean electron energy remains constant due to higher breakdown voltage and lower discharge power,and some high-energy electrons are consumed by the excitation and attachment of SF6.In contrast,when a small amount of SF6 is added into dry air discharge,despite the consumption of the excitation and attachment of SF6,the number of high energy electrons increases sharply,which is attributed to the higher mean electron energy and electron density resulted from higher breakdown voltage and discharge power.When the volume fraction of SF6 increases from 0 to 2.22%,the ozone mass concentration and the ozone yield increase by 45.7% and 29.7%,respectively.Therefore,though the oxygen source should avoid the presence of SF6,adding a small amount of SF6 can improve the ozone mass concentration and the efficiency of ozone generation.
基金Project Supported by UHV Transmission and Transformation System Development and Demonstration Program of National Key Tech-nology R&D Program(2006BAA02A04)
文摘Corona discharge is being detected by UV imaging detection technology at home and abroad in recent years.This technology is used in the corona tests of conductor bundles in this paper.In order to further research the corona characteristic,optimize geometry parameters and diameter of sub-conductor,and increase corona onset voltage of transmission lines,corona tests of three model conductors which are placed inside the outdoor corona cage are conducted.Corona cage could be used to simulate the corona activities on transmission lines under a low voltage and different conditions in an effective and economical way.Photon which was created by UV light as a result of corona discharge on conductors is detected by the UV detection apparatus.The photon number within unit interval,namely photon counting rate is adopted as the parameter of quantifying the intensity of corona discharge.According to the apparent change of photon number,corona onset voltage can be judged.All tests are conducted under almost same atmosphere condition.Using the method,corona onset voltage is acquired.The results indicate that the tests have a good repeatability,in other words,repeating same test twice same result can be aquired.The corona onset voltage can be acquired exactly from the curve of applied voltage vs.photon counting rate.Therefore UV detection apparatus can not only used to find discharge point exactly,but also applied on corona discharge research and live detection for power equipments.The method using in this paper is proved that is a new available method.
基金Project supported by National Natural Science Foundation of China (51177136).
文摘Partial discharge (PD) under a sequence of high-repetition-rate square pulses is one of the key factors leading to premature failure of insulation systems of inverter-fed motors. Polyimide (PI) film is an important type of insulating material used in the inverter-fed motors. In this paper, micro-morphology and structure change of PI film aged by bipolar continuous square impulse voltage (BCSIV) with ampli- tude above partial discharge inception voltage (PDIV) are investigated by scanning electron microscope (SEM). The chemical bonds of PI chain are analyzed through Fourier transform infrared spectroscopy (FTIR). The results show that the degradation mechanism of PI film is the fracturing of chemical bonds caused by the erosion from PDs. Three layers are displayed in both 100 HN film and 100 CR film. The de- gradation path of PI film is initiated from surface and then gradually extends to the interior with continuous aging. Nano-fillers can retard the degradation of PI film and prolong its lifetime.
基金Project supported by National Science Foundation of China (11205046, 51077035), Science Foundation of Hebei Province(A2012201037), China Postdoctoral Science Foundation(2013M541195), Science Foundation of Hebei University (2011YYO 1, 2012-237).
文摘The mechanism of micro-hollow cathode discharge at atmospheric pressure is investigated through simulations using two-dimensional fluid model combined with a transport model for metastable atoms.In the simulations,electric potential,electric field,particle density,and mean electron energy of the discharge are calculated.The results show that the two characteristic regions of the discharge,i.e.cathode drop and negative glow can be distinguished in the simulation.The cathode drop is characterized by strong electric field and high mean electron energy,while quasi-neutral plasma of high density and exists in the negative glow.The peak value of electron density can reach the order of 1017cm-3.The electron temperature varies from several eV to tens of eV.The influence of cathode dimension on the discharge characteristics is also investigated.
基金supported by Science and Technology Project of SGCC(SG1021)
文摘For developing ultra-high voltage(UHV) AC power transmission systems,it is important to precisely estimate and to limit the radio interference(RI) level of power lines.Based on the stochastic characteristics in amplitude and repetition rate of induced corona current,by using the probability theory and mathematical statistics,we establish a stochastic model for the wide-sense stationary random process of corona discharges.Then combining the stochastic model with model-propagation-analysis method,the RI levels under three-phase UHV AC transmission lines are calculated.The results of the calculation based on stochastic model method and International Council on Large Electric Systems(CIGRE) excitation function are compared with that based on semi-empirical method and some other excitation functions.The stochastic model based on different excitation functions is also adopted to simulate the RI levels under finite test lines with two opened terminations.The results indicate that with the same average maximum gradient on conductor surface and the same conductor type,the number of corona discharge per unit length is one of the main reasons that causes the difference between different excitation functions.It is also concluded that for a long test line,the effect of standing wave on RI field strength is negligible in the middle of the line,but obvious near both terminations: for a 10-km line,the maximum difference in RI field strength is 2.78 dB,between the peak value of the standing wave near the ends and the steady value near the middle of the line.