For the Sylvester continued fraction expansions of real numbers,FAN et al.(2007)proved that,for almost all real numbers,the nth partial quotient grows exponentially with respect to the product of the first n-1 partial...For the Sylvester continued fraction expansions of real numbers,FAN et al.(2007)proved that,for almost all real numbers,the nth partial quotient grows exponentially with respect to the product of the first n-1 partial quotients.In this paper,we establish the Hausdorff dimension of the exceptional set where the growth rate is a general function.展开更多
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base...In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm.展开更多
Background Zonal application maps are designed to represent field variability using key variables that can be translated into tailored management practices.For cotton,zonal maps for crop growth regulator(CGR)applicati...Background Zonal application maps are designed to represent field variability using key variables that can be translated into tailored management practices.For cotton,zonal maps for crop growth regulator(CGR)applications under variable-rate(VR)strategies are commonly based exclusively on vegetation indices(VIs)variability.However,VIs often saturate in dense crop vegetation areas,limiting their effectiveness in distinguishing variability in crop growth.This study aimed to compare unsupervised framework(UF)and supervised framework(SUF)approaches for generat-ing zonal application maps for CGR under VR conditions.During 2022-2023 agricultural seasons,an UF was employed to generate zonal maps based on locally collected field data on plant height of cotton,satellite imagery,soil texture,and phenology data.Subsequently,a SUF(based on historical data between 2020-2021 to 2022-2023 agricultural seasons)was developed to predict plant height using remote sensing and phenology data,aiming to replicate same zonal maps but without relying on direct field measurements of plant height.Both approaches were tested in three fields and on two different dates per field.Results The predictive model for plant height of SUF performed well,as indicated by the model metrics.However,when comparing zonal application maps for specific field-date combinations,the predicted plant height exhibited lower variability compared with field measurements.This led to variable compatibility between SUF maps,which utilized the model predictions,and the UF maps,which were based on the real field data.Fields characterized by much pronounced soil texture variability yielded the highest compatibility between the zonal application maps produced by both SUF and UF approaches.This was predominantly due to the greater consistency in estimating plant development patterns within these heterogeneous field environments.While VR application approach can facilitate product savings during the application operation,other key factors must be considered.These include the availability of specialized machinery required for this type of applications,as well as the inherent operational costs associated with applying a single CGR product which differs from the typical uniform rate applications that often integrate multi-ple inputs.Conclusion Predictive modeling shows promise for assisting in the creation of zonal application maps for VR of CGR applications.However,the degree of agreement with the actual variability in crop growth found in the field should be evaluated on a field-by-field basis.The SUF approach,which is based on plant heigh prediction,demonstrated potential for supporting the development of zonal application maps for VR of CGR applications.However,the degree to which this approach aligns itself with the actual variability in crop growth observed in the field may vary,necessi-tating field-by-field evaluation.展开更多
The goethite residue generated from zinc hydrometallurgy is classified as hazardous solid waste,produced in large quantities,and results in significant zinc loss.The study was conducted on removing iron from FeSO_(4)-...The goethite residue generated from zinc hydrometallurgy is classified as hazardous solid waste,produced in large quantities,and results in significant zinc loss.The study was conducted on removing iron from FeSO_(4)-ZnSO_(4) solution,employing seed-induced nucleation methods.Analysis of the iron removal rate,residue structure,morphology,and elemental composition involved ICP,XRD,FT-IR,and SEM.The existing state of zinc was investigated by combining step-by-step dissolution using hydrochloric acid.Concurrently,iron removal tests were extended to industrial solutions to assess the influence of seeds and solution pH on zinc loss and residue yield.The results revealed that seed addition increased the iron removal rate by 3%,elevated the residual iron content by 6.39%,and mitigated zinc loss by 29.55%in the simulated solution.Seed-induced nucleation prevented excessive nuclei formation,fostering crystal stable growth and high crystallinity.In addition,the zinc content of surface adsorption and crystal internal embedding in the residue was determined,and the zinc distribution on the surface was dense.In contrast,the total amount of zinc within the crystal was higher.The test results in the industrial solution demonstrated that the introduction of seeds expanded the pH range for goethite formation and growth,and the zinc loss per ton of iron removed was reduced by 50.91 kg(34.12%)and the iron residue reduced by 0.17 t(8.72%).展开更多
Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planti...Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planting system(HDPS)offers a viable method to enhance productivity by increasing plant populations per unit area,optimizing resource utilization,and facilitating machine picking.Cotton is an indeterminate plant that produce excessive vegeta-tive growth in favorable soil fertility and moisture conditions,which posing challenges for efficient machine picking.To address this issue,the application of plant growth retardants(PGRs)is essential for controlling canopy architecture.PGRs reduce internode elongation,promote regulated branching,and increase plant compactness,making cotton plants better suited for machine picking.PGRs application also optimizes photosynthates distribution between veg-etative and reproductive growth,resulting in higher yields and improved fibre quality.The integration of HDPS and PGRs applications results in an optimal plant architecture for improving machine picking efficiency.However,the success of this integration is determined by some factors,including cotton variety,environmental conditions,and geographical variations.These approaches not only address yield stagnation and labour shortages but also help to establish more effective and sustainable cotton farming practices,resulting in higher cotton productivity.展开更多
[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-base...[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-based models that utilize either images data or environmental data.These methods fail to fully leverage multi-modal data to capture the diverse aspects of plant growth comprehensively.[Methods]To address this limitation,a two-stage phenotypic feature extraction(PFE)model based on deep learning algorithm of recurrent neural network(RNN)and long short-term memory(LSTM)was developed.The model integrated environment and plant information to provide a holistic understanding of the growth process,emploied phenotypic and temporal feature extractors to comprehensively capture both types of features,enabled a deeper understanding of the interaction between tomato plants and their environment,ultimately leading to highly accurate predictions of growth height.[Results and Discussions]The experimental results showed the model's ef‐fectiveness:When predicting the next two days based on the past five days,the PFE-based RNN and LSTM models achieved mean absolute percentage error(MAPE)of 0.81%and 0.40%,respectively,which were significantly lower than the 8.00%MAPE of the large language model(LLM)and 6.72%MAPE of the Transformer-based model.In longer-term predictions,the 10-day prediction for 4 days ahead and the 30-day prediction for 12 days ahead,the PFE-RNN model continued to outperform the other two baseline models,with MAPE of 2.66%and 14.05%,respectively.[Conclusions]The proposed method,which leverages phenotypic-temporal collaboration,shows great potential for intelligent,data-driven management of tomato cultivation,making it a promising approach for enhancing the efficiency and precision of smart tomato planting management.展开更多
In recent years,growth hormone and insulin-like growth factors have become key regulators of bone metabolism and remodeling,crucial for maintaining healthy bone mass throughout life.Studies have shown that adult growt...In recent years,growth hormone and insulin-like growth factors have become key regulators of bone metabolism and remodeling,crucial for maintaining healthy bone mass throughout life.Studies have shown that adult growth hormone deficiency leads to alterations in bone remodeling,significantly affecting bone microarchitecture and increasing fracture risk.Although recombinant human growth hormone replacement therapy can mitigate these adverse effects,improving bone density,and reduce fracture risk,its effectiveness in treating osteoporosis,especially in adults with established growth hormone deficiency,seems limited.Bisphosphonates inhibit bone resorption by targeting farnesyl pyrophosphate synthase in osteoclasts,and clinical trials have confirmed their efficacy in improving osteoporosis.Therefore,for adult growth hormone deficiency patients with osteoporosis,the use of bisphosphonates alongside growth hormone replacement therapy is recommended.展开更多
While three-dimensional perovskites have high defect tolerance and an adjustable bandgap,their charges tend to be free rather than forming excitons,making them unsuitable for use in efficient light-emitting diodes(LED...While three-dimensional perovskites have high defect tolerance and an adjustable bandgap,their charges tend to be free rather than forming excitons,making them unsuitable for use in efficient light-emitting diodes(LEDs).Rather,quasi-two-dimensional(Q-2D)perovskites offer high photoluminescence quantum yield along with the advantages of bulk perovskites,making them ideal for high-performance LEDs.In Q-2D perovskites,the structure(which includes factors like crystal orientation,phase distribution,and layer thickness)directly influences how excitons and charge carriers behave within the material.Growth control techniques,such as varying the synthesis conditions or employing methods,allow for fine-tuning the structural characteristics of these materials,which in turn affect exciton dynamics and charge transport.This review starts with a description of the basic properties of Q-2D perovskites,examines crystal growth in solution,explains how structure affects energy transfer behavior,and concludes with future directions for Q-2D perovskite LEDs.By understanding and optimizing the structure-dependent behavior,researchers can better control exciton dynamics and charge transport,which are crucial for enhancing the performance of optoelectronic devices like solar cells and LEDs.展开更多
Significant progress has recently been made in enhancing the power conversion efficiency(PCE)of perovskite solar cells(PSCs).The electron transport layer(ETL),as an essential component of PSCs,significantly influences...Significant progress has recently been made in enhancing the power conversion efficiency(PCE)of perovskite solar cells(PSCs).The electron transport layer(ETL),as an essential component of PSCs,significantly influences the performance of devices.Traditional spin-coating method for preparing the ETL fails to fully cover the cusp of FTO transparent conductive glass substrate,leading to direct contact between perovskite film and FTO substrate,which induces charge recombination and reduces the performance of PSCs.To address this issue,an in-situ growth method was proposed to prepare conformal SnO_(2) films on FTO glass substrates in this study.The resulting SnO_(2) films are not only dense and uniform,fully covering the cusp of the FTO glass substrates and reducing the contact area between the FTO substrates and the perovskite films,but also facilitating the formation of perovskite films with large grain sizes.Moreover,the conformal SnO_(2) films can improve the charge extraction at the SnO_(2)/perovskite interface,reduce the trap density and trap-assisted recombination in PSCs,and thus enhance the PCE of PSCs.Through comparative experiments,it is found that the PSCs with in-situ grown SnO_(2) films show an improved PCE of 21.97%,which significantly increased compared to that with spin-coated SnO_(2) films(20.93%).All above data demonstrate that the as-prepared SnO_(2) film can serve as an ideal ETL.It is worth mentioning that this method avoids the use of corrosive hydrochloric acid and toxic thioglycolic acid,and it can also be extended to ITO flexible transparent conductive substrates in the future.展开更多
The process of rice(Oryza sativa L.)seedling cultivation is often subjected to adverse environmental stress.Biostimulants regulate the robust growth of rice seedlings and play a crucial role in promoting the green and...The process of rice(Oryza sativa L.)seedling cultivation is often subjected to adverse environmental stress.Biostimulants regulate the robust growth of rice seedlings and play a crucial role in promoting the green and ecological development of agriculture.In this study,1.0 and 2.0 g•m^(-2) of the biostimulant were applied to soil in rice seedbeds.Growth indicators of rice,antioxidant enzyme activities and soil physicochemical characteristics were assessed at the 2.5-leaf and 4-leaf stages of rice.The results indicated that applying 2.0 g•m^(-2) of the biostimulant at both the 2.5-leaf and 4-leaf stages had the most significant promoting effect on rice growth.At the 2.5-leaf and 4-leaf stages,the number of fibrous roots increased by 23.43%and 22.25%,stem base width increased by 19.05%and 19.58%,above ground dry weight increased by 18.09%and 16.47%,root dry weight increased by 19.67%and 18.28%,leaf peroxidase(POD)activity increased by 34.44%and 42.94%,superoxide dismutase(SOD)activity increased by 37.24%and 56.79%,malondialdehyde(MDA)content decreased by 18.60%and 27.67%,and chlorophyll content increased significantly by 28.31%and 34.24%,respectively.At the 4-leaf stage of rice,urease,phosphatase and cellulase activities in the seedbed soil increased by 42.13%,25.96%and 33.59%,respectively,while soil alkaline nitrogen,available phosphorus and available potassium content decreased by 19.76%,19.02%and 17.88%,respectively.The application of biostimulants played a crucial role in promoting the growth of rice seedlings and enhancing soil nutrient absorption.展开更多
As an important wild blueberry resource,Vaccinium uliginosum has attracted more and more attention.At present,the wild resources are under destruction.The conservation of wild Vaccinium uliginosum resources is imminen...As an important wild blueberry resource,Vaccinium uliginosum has attracted more and more attention.At present,the wild resources are under destruction.The conservation of wild Vaccinium uliginosum resources is imminent.However,there are few researches on the protection and preservation of its germplasm resources.In vitro preservation is an important method for germplasm conservation.In this study,one strain of wild Vaccinium uliginosum was used as material.The effects of temperature(25℃,15℃,10℃,or 0℃),media(WPM,1/2WPM or 1/3WPM),medium supplements(sorbitol or mannose),and photoperiod(8,10,12,or 14 h•d^(-1))on the growth,survival rate and rejuvenation rate of the plantlets were studied.The physiological changes of plantlets during preservation were analyzed.Methylation-sensitive amplified polymorphism(MSAP)analysis of genomic DNA methylation of plantlets was carried out to explore the genetic stability of the plantlets after preservation.The research results provided a theoretical basis for the germplasm preservation of Vaccinium uliginosum.展开更多
This study aimed to investigate the effects of fermented puffed feather meal(FPFM)on growth performance,serum biochemical indices,meat quality,and intestinal microbiota in Arbor Acres(AA)broilers.A single-factor desig...This study aimed to investigate the effects of fermented puffed feather meal(FPFM)on growth performance,serum biochemical indices,meat quality,and intestinal microbiota in Arbor Acres(AA)broilers.A single-factor design was adopted,and four treatments were administered with five replicates to 240 one-day-old AA broilers.The control group(group A)received a basal diet,while the experimental groups received a basal diet plus 33%(group B),67%(group C)and 100%(group D)FPFM,respectively.Compared with group A,(1)the average daily gain(ADG)in group C decreased(P<0.05),and the feed conversion ratio(FCR)in group D increased(P<0.05);(2)the level of serum urea nitrogen in treatment groups decreased(P<0.05),and the levels of triglyceride,high density lipoprotein,low density lipoprotein,cholesterol,and glucose contents in group D increased(P<0.05)at day 21;(3)the serum immunoglobulin M and immunoglobulin G in group B and the immunoglobulin A in group C increased(P<0.05)at day 21,and the serum immunoglobulin M and immunoglobulin G in group D decreased(P<0.05)at day 42;(4)the share force of breast muscle and thigh muscle in group D increased(P<0.05);(5)the villus height to crypt depth ratio in the jejunum of group B increased(P<0.05)at day 21,and the villus height in group C and D increased(P<0.05)at day 42;(6)the proteobacteria counts in the cecum digesta in treatment groups decreased(P<0.05)at day 21.The basal diet supplemented with 33%FPFM promoted protein metabolism,enhanced immunity and improved meat quality,promoted the digestion and absorption of nutrients,increased intestinal microbial diversity,and improved the content of beneficial bacteria without affecting the growth performance,it was possible to be used as a good substitute for fish meal.展开更多
基金Supported by Projects from Chongqing Municipal Science and Technology Commission(CSTB2022NSCQ-MSX0445)。
文摘For the Sylvester continued fraction expansions of real numbers,FAN et al.(2007)proved that,for almost all real numbers,the nth partial quotient grows exponentially with respect to the product of the first n-1 partial quotients.In this paper,we establish the Hausdorff dimension of the exceptional set where the growth rate is a general function.
基金Shanxi Province Higher Education Science and Technology Innovation Fund Project(2022-676)Shanxi Soft Science Program Research Fund Project(2016041008-6)。
文摘In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm.
文摘Background Zonal application maps are designed to represent field variability using key variables that can be translated into tailored management practices.For cotton,zonal maps for crop growth regulator(CGR)applications under variable-rate(VR)strategies are commonly based exclusively on vegetation indices(VIs)variability.However,VIs often saturate in dense crop vegetation areas,limiting their effectiveness in distinguishing variability in crop growth.This study aimed to compare unsupervised framework(UF)and supervised framework(SUF)approaches for generat-ing zonal application maps for CGR under VR conditions.During 2022-2023 agricultural seasons,an UF was employed to generate zonal maps based on locally collected field data on plant height of cotton,satellite imagery,soil texture,and phenology data.Subsequently,a SUF(based on historical data between 2020-2021 to 2022-2023 agricultural seasons)was developed to predict plant height using remote sensing and phenology data,aiming to replicate same zonal maps but without relying on direct field measurements of plant height.Both approaches were tested in three fields and on two different dates per field.Results The predictive model for plant height of SUF performed well,as indicated by the model metrics.However,when comparing zonal application maps for specific field-date combinations,the predicted plant height exhibited lower variability compared with field measurements.This led to variable compatibility between SUF maps,which utilized the model predictions,and the UF maps,which were based on the real field data.Fields characterized by much pronounced soil texture variability yielded the highest compatibility between the zonal application maps produced by both SUF and UF approaches.This was predominantly due to the greater consistency in estimating plant development patterns within these heterogeneous field environments.While VR application approach can facilitate product savings during the application operation,other key factors must be considered.These include the availability of specialized machinery required for this type of applications,as well as the inherent operational costs associated with applying a single CGR product which differs from the typical uniform rate applications that often integrate multi-ple inputs.Conclusion Predictive modeling shows promise for assisting in the creation of zonal application maps for VR of CGR applications.However,the degree of agreement with the actual variability in crop growth found in the field should be evaluated on a field-by-field basis.The SUF approach,which is based on plant heigh prediction,demonstrated potential for supporting the development of zonal application maps for VR of CGR applications.However,the degree to which this approach aligns itself with the actual variability in crop growth observed in the field may vary,necessi-tating field-by-field evaluation.
基金Project(2018YFC1900403) supported by the National Key Research and Development Program of ChinaProject(CX20210197) supported by the Postgraduate Scientific Research Innovation Project of Hunan Province,China+1 种基金Project(202206370103) supported by the China Scholarship CouncilProject(2021zzts0115) supported by the Fundamental Research Funds for the Central Universities,China。
文摘The goethite residue generated from zinc hydrometallurgy is classified as hazardous solid waste,produced in large quantities,and results in significant zinc loss.The study was conducted on removing iron from FeSO_(4)-ZnSO_(4) solution,employing seed-induced nucleation methods.Analysis of the iron removal rate,residue structure,morphology,and elemental composition involved ICP,XRD,FT-IR,and SEM.The existing state of zinc was investigated by combining step-by-step dissolution using hydrochloric acid.Concurrently,iron removal tests were extended to industrial solutions to assess the influence of seeds and solution pH on zinc loss and residue yield.The results revealed that seed addition increased the iron removal rate by 3%,elevated the residual iron content by 6.39%,and mitigated zinc loss by 29.55%in the simulated solution.Seed-induced nucleation prevented excessive nuclei formation,fostering crystal stable growth and high crystallinity.In addition,the zinc content of surface adsorption and crystal internal embedding in the residue was determined,and the zinc distribution on the surface was dense.In contrast,the total amount of zinc within the crystal was higher.The test results in the industrial solution demonstrated that the introduction of seeds expanded the pH range for goethite formation and growth,and the zinc loss per ton of iron removed was reduced by 50.91 kg(34.12%)and the iron residue reduced by 0.17 t(8.72%).
文摘Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planting system(HDPS)offers a viable method to enhance productivity by increasing plant populations per unit area,optimizing resource utilization,and facilitating machine picking.Cotton is an indeterminate plant that produce excessive vegeta-tive growth in favorable soil fertility and moisture conditions,which posing challenges for efficient machine picking.To address this issue,the application of plant growth retardants(PGRs)is essential for controlling canopy architecture.PGRs reduce internode elongation,promote regulated branching,and increase plant compactness,making cotton plants better suited for machine picking.PGRs application also optimizes photosynthates distribution between veg-etative and reproductive growth,resulting in higher yields and improved fibre quality.The integration of HDPS and PGRs applications results in an optimal plant architecture for improving machine picking efficiency.However,the success of this integration is determined by some factors,including cotton variety,environmental conditions,and geographical variations.These approaches not only address yield stagnation and labour shortages but also help to establish more effective and sustainable cotton farming practices,resulting in higher cotton productivity.
文摘[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-based models that utilize either images data or environmental data.These methods fail to fully leverage multi-modal data to capture the diverse aspects of plant growth comprehensively.[Methods]To address this limitation,a two-stage phenotypic feature extraction(PFE)model based on deep learning algorithm of recurrent neural network(RNN)and long short-term memory(LSTM)was developed.The model integrated environment and plant information to provide a holistic understanding of the growth process,emploied phenotypic and temporal feature extractors to comprehensively capture both types of features,enabled a deeper understanding of the interaction between tomato plants and their environment,ultimately leading to highly accurate predictions of growth height.[Results and Discussions]The experimental results showed the model's ef‐fectiveness:When predicting the next two days based on the past five days,the PFE-based RNN and LSTM models achieved mean absolute percentage error(MAPE)of 0.81%and 0.40%,respectively,which were significantly lower than the 8.00%MAPE of the large language model(LLM)and 6.72%MAPE of the Transformer-based model.In longer-term predictions,the 10-day prediction for 4 days ahead and the 30-day prediction for 12 days ahead,the PFE-RNN model continued to outperform the other two baseline models,with MAPE of 2.66%and 14.05%,respectively.[Conclusions]The proposed method,which leverages phenotypic-temporal collaboration,shows great potential for intelligent,data-driven management of tomato cultivation,making it a promising approach for enhancing the efficiency and precision of smart tomato planting management.
基金This work was supported by the Special Project of Performance Incentive and Guidance for Scientific Research Institutions of Chongqing,China (jxyn2022-5)。
文摘In recent years,growth hormone and insulin-like growth factors have become key regulators of bone metabolism and remodeling,crucial for maintaining healthy bone mass throughout life.Studies have shown that adult growth hormone deficiency leads to alterations in bone remodeling,significantly affecting bone microarchitecture and increasing fracture risk.Although recombinant human growth hormone replacement therapy can mitigate these adverse effects,improving bone density,and reduce fracture risk,its effectiveness in treating osteoporosis,especially in adults with established growth hormone deficiency,seems limited.Bisphosphonates inhibit bone resorption by targeting farnesyl pyrophosphate synthase in osteoclasts,and clinical trials have confirmed their efficacy in improving osteoporosis.Therefore,for adult growth hormone deficiency patients with osteoporosis,the use of bisphosphonates alongside growth hormone replacement therapy is recommended.
文摘While three-dimensional perovskites have high defect tolerance and an adjustable bandgap,their charges tend to be free rather than forming excitons,making them unsuitable for use in efficient light-emitting diodes(LEDs).Rather,quasi-two-dimensional(Q-2D)perovskites offer high photoluminescence quantum yield along with the advantages of bulk perovskites,making them ideal for high-performance LEDs.In Q-2D perovskites,the structure(which includes factors like crystal orientation,phase distribution,and layer thickness)directly influences how excitons and charge carriers behave within the material.Growth control techniques,such as varying the synthesis conditions or employing methods,allow for fine-tuning the structural characteristics of these materials,which in turn affect exciton dynamics and charge transport.This review starts with a description of the basic properties of Q-2D perovskites,examines crystal growth in solution,explains how structure affects energy transfer behavior,and concludes with future directions for Q-2D perovskite LEDs.By understanding and optimizing the structure-dependent behavior,researchers can better control exciton dynamics and charge transport,which are crucial for enhancing the performance of optoelectronic devices like solar cells and LEDs.
基金Space Application System of China Manned Space Program。
文摘Significant progress has recently been made in enhancing the power conversion efficiency(PCE)of perovskite solar cells(PSCs).The electron transport layer(ETL),as an essential component of PSCs,significantly influences the performance of devices.Traditional spin-coating method for preparing the ETL fails to fully cover the cusp of FTO transparent conductive glass substrate,leading to direct contact between perovskite film and FTO substrate,which induces charge recombination and reduces the performance of PSCs.To address this issue,an in-situ growth method was proposed to prepare conformal SnO_(2) films on FTO glass substrates in this study.The resulting SnO_(2) films are not only dense and uniform,fully covering the cusp of the FTO glass substrates and reducing the contact area between the FTO substrates and the perovskite films,but also facilitating the formation of perovskite films with large grain sizes.Moreover,the conformal SnO_(2) films can improve the charge extraction at the SnO_(2)/perovskite interface,reduce the trap density and trap-assisted recombination in PSCs,and thus enhance the PCE of PSCs.Through comparative experiments,it is found that the PSCs with in-situ grown SnO_(2) films show an improved PCE of 21.97%,which significantly increased compared to that with spin-coated SnO_(2) films(20.93%).All above data demonstrate that the as-prepared SnO_(2) film can serve as an ideal ETL.It is worth mentioning that this method avoids the use of corrosive hydrochloric acid and toxic thioglycolic acid,and it can also be extended to ITO flexible transparent conductive substrates in the future.
文摘The process of rice(Oryza sativa L.)seedling cultivation is often subjected to adverse environmental stress.Biostimulants regulate the robust growth of rice seedlings and play a crucial role in promoting the green and ecological development of agriculture.In this study,1.0 and 2.0 g•m^(-2) of the biostimulant were applied to soil in rice seedbeds.Growth indicators of rice,antioxidant enzyme activities and soil physicochemical characteristics were assessed at the 2.5-leaf and 4-leaf stages of rice.The results indicated that applying 2.0 g•m^(-2) of the biostimulant at both the 2.5-leaf and 4-leaf stages had the most significant promoting effect on rice growth.At the 2.5-leaf and 4-leaf stages,the number of fibrous roots increased by 23.43%and 22.25%,stem base width increased by 19.05%and 19.58%,above ground dry weight increased by 18.09%and 16.47%,root dry weight increased by 19.67%and 18.28%,leaf peroxidase(POD)activity increased by 34.44%and 42.94%,superoxide dismutase(SOD)activity increased by 37.24%and 56.79%,malondialdehyde(MDA)content decreased by 18.60%and 27.67%,and chlorophyll content increased significantly by 28.31%and 34.24%,respectively.At the 4-leaf stage of rice,urease,phosphatase and cellulase activities in the seedbed soil increased by 42.13%,25.96%and 33.59%,respectively,while soil alkaline nitrogen,available phosphorus and available potassium content decreased by 19.76%,19.02%and 17.88%,respectively.The application of biostimulants played a crucial role in promoting the growth of rice seedlings and enhancing soil nutrient absorption.
基金Supported by the National Natural Science Foundation of China(32172521)。
文摘As an important wild blueberry resource,Vaccinium uliginosum has attracted more and more attention.At present,the wild resources are under destruction.The conservation of wild Vaccinium uliginosum resources is imminent.However,there are few researches on the protection and preservation of its germplasm resources.In vitro preservation is an important method for germplasm conservation.In this study,one strain of wild Vaccinium uliginosum was used as material.The effects of temperature(25℃,15℃,10℃,or 0℃),media(WPM,1/2WPM or 1/3WPM),medium supplements(sorbitol or mannose),and photoperiod(8,10,12,or 14 h•d^(-1))on the growth,survival rate and rejuvenation rate of the plantlets were studied.The physiological changes of plantlets during preservation were analyzed.Methylation-sensitive amplified polymorphism(MSAP)analysis of genomic DNA methylation of plantlets was carried out to explore the genetic stability of the plantlets after preservation.The research results provided a theoretical basis for the germplasm preservation of Vaccinium uliginosum.
基金Supported by Harbin Applied Technology Research and Development Project(2016RAXXJ015)。
文摘This study aimed to investigate the effects of fermented puffed feather meal(FPFM)on growth performance,serum biochemical indices,meat quality,and intestinal microbiota in Arbor Acres(AA)broilers.A single-factor design was adopted,and four treatments were administered with five replicates to 240 one-day-old AA broilers.The control group(group A)received a basal diet,while the experimental groups received a basal diet plus 33%(group B),67%(group C)and 100%(group D)FPFM,respectively.Compared with group A,(1)the average daily gain(ADG)in group C decreased(P<0.05),and the feed conversion ratio(FCR)in group D increased(P<0.05);(2)the level of serum urea nitrogen in treatment groups decreased(P<0.05),and the levels of triglyceride,high density lipoprotein,low density lipoprotein,cholesterol,and glucose contents in group D increased(P<0.05)at day 21;(3)the serum immunoglobulin M and immunoglobulin G in group B and the immunoglobulin A in group C increased(P<0.05)at day 21,and the serum immunoglobulin M and immunoglobulin G in group D decreased(P<0.05)at day 42;(4)the share force of breast muscle and thigh muscle in group D increased(P<0.05);(5)the villus height to crypt depth ratio in the jejunum of group B increased(P<0.05)at day 21,and the villus height in group C and D increased(P<0.05)at day 42;(6)the proteobacteria counts in the cecum digesta in treatment groups decreased(P<0.05)at day 21.The basal diet supplemented with 33%FPFM promoted protein metabolism,enhanced immunity and improved meat quality,promoted the digestion and absorption of nutrients,increased intestinal microbial diversity,and improved the content of beneficial bacteria without affecting the growth performance,it was possible to be used as a good substitute for fish meal.