Overlapping community detection in a network is a challenging issue which attracts lots of attention in recent years.A notion of hesitant node(HN) is proposed. An HN contacts with multiple communities while the comm...Overlapping community detection in a network is a challenging issue which attracts lots of attention in recent years.A notion of hesitant node(HN) is proposed. An HN contacts with multiple communities while the communications are not strong or even accidental, thus the HN holds an implicit community structure.However, HNs are not rare in the real world network. It is important to identify them because they can be efficient hubs which form the overlapping portions of communities or simple attached nodes to some communities. Current approaches have difficulties in identifying and clustering HNs. A density-based rough set model(DBRSM) is proposed by combining the virtue of densitybased algorithms and rough set models. It incorporates the macro perspective of the community structure of the whole network and the micro perspective of the local information held by HNs, which would facilitate the further "growth" of HNs in community. We offer a theoretical support for this model from the point of strength of the trust path. The experiments on the real-world and synthetic datasets show the practical significance of analyzing and clustering the HNs based on DBRSM. Besides, the clustering based on DBRSM promotes the modularity optimization.展开更多
Two pairs of approximation operators, which are the scale lower and upper approximations as well as the real line lower and upper approximations, are defined. Their properties and antithesis characteristics are analyz...Two pairs of approximation operators, which are the scale lower and upper approximations as well as the real line lower and upper approximations, are defined. Their properties and antithesis characteristics are analyzed. The rough function model is generalized based on rough set theory, and the scheme of rough function theory is made more distinct and complete. Therefore, the transformation of the real function analysis from real line to scale is achieved. A series of basic concepts in rough function model including rough numbers, rough intervals, and rough membership functions are defined in the new scheme of the rough function model. Operating properties of rough intervals similar to rough sets are obtained. The relationship of rough inclusion and rough equality of rough intervals is defined by two kinds of tools, known as the lower (upper) approximation operator in real numbers domain and rough membership functions. Their relative properties are analyzed and proved strictly, which provides necessary theoretical foundation and technical support for the further discussion of properties and practical application of the rough function model.展开更多
基金supported by the National Natural Science Foundation of China(71271018)
文摘Overlapping community detection in a network is a challenging issue which attracts lots of attention in recent years.A notion of hesitant node(HN) is proposed. An HN contacts with multiple communities while the communications are not strong or even accidental, thus the HN holds an implicit community structure.However, HNs are not rare in the real world network. It is important to identify them because they can be efficient hubs which form the overlapping portions of communities or simple attached nodes to some communities. Current approaches have difficulties in identifying and clustering HNs. A density-based rough set model(DBRSM) is proposed by combining the virtue of densitybased algorithms and rough set models. It incorporates the macro perspective of the community structure of the whole network and the micro perspective of the local information held by HNs, which would facilitate the further "growth" of HNs in community. We offer a theoretical support for this model from the point of strength of the trust path. The experiments on the real-world and synthetic datasets show the practical significance of analyzing and clustering the HNs based on DBRSM. Besides, the clustering based on DBRSM promotes the modularity optimization.
基金the Scientific Research and Development Project of Shandong Provincial Education Department(J06P01)the Science and Technology Fundation of University of Jinan (XKY0703).
文摘Two pairs of approximation operators, which are the scale lower and upper approximations as well as the real line lower and upper approximations, are defined. Their properties and antithesis characteristics are analyzed. The rough function model is generalized based on rough set theory, and the scheme of rough function theory is made more distinct and complete. Therefore, the transformation of the real function analysis from real line to scale is achieved. A series of basic concepts in rough function model including rough numbers, rough intervals, and rough membership functions are defined in the new scheme of the rough function model. Operating properties of rough intervals similar to rough sets are obtained. The relationship of rough inclusion and rough equality of rough intervals is defined by two kinds of tools, known as the lower (upper) approximation operator in real numbers domain and rough membership functions. Their relative properties are analyzed and proved strictly, which provides necessary theoretical foundation and technical support for the further discussion of properties and practical application of the rough function model.