摘要
检索是CBR中的关键技术,直接影响CBR的推理效率和质量,检索出的案例质量的好坏直接影响着案例重用与修改的难易,该文提出先用粗糙集约简理论去除冗余的案例决策表特征,再用BP神经网络模型来实现相似案例检索,这种检索方法不需要定义案例属性之间的相似度,检索速度快。
Retrieval is the key technology in CBR.It imposes a direct effect on the efficiency and quality of CBR,and the quality of the retrieved case determines the difficulty of case reuse and adaptation.In the paper,the rough set is used to reduce the features of the case decision table and BP neural network is used to retrieve the similar cases.This method has high retrieval speed,but does not need the similar degree between the case features.
出处
《计算机工程与应用》
CSCD
北大核心
2003年第3期25-27,共3页
Computer Engineering and Applications
基金
国家863高技术研究发展课题资助(编号:863-511-9944-019)