The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condit...The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condition.However,with the increasing requirement of far-range detection,the time bandwidth product,which is corresponding to radar’s mean power,should be promoted in actual application.Thus,the echo signal generates the scale effect(SE)at large time bandwidth product situation,influencing the intra and inter pulse integration performance.To eliminate SE and correct RM,this paper proposes an effective algorithm,i.e.,scaled location rotation transform(ScLRT).The ScLRT can remove SE to obtain the matching pulse compression(PC)as well as correct RM to complete CI via the location rotation transform,being implemented by seeking the actual rotation angle.Compared to the traditional coherent detection algorithms,Sc LRT can address the SE problem to achieve better detection/estimation capabilities.At last,this paper gives several simulations to assess the viability of ScLRT.展开更多
稳定高精度的定位是实现地面无人车辆协同自主行驶的先决条件。激光同时定位与建图(Simultaneous Localization and Mapping,SLAM)技术在缺少几何特征的走廊、隧道、沙漠等场景中难以实现精准定位。为此提出一种无人车蛙跳协同的激光SLA...稳定高精度的定位是实现地面无人车辆协同自主行驶的先决条件。激光同时定位与建图(Simultaneous Localization and Mapping,SLAM)技术在缺少几何特征的走廊、隧道、沙漠等场景中难以实现精准定位。为此提出一种无人车蛙跳协同的激光SLAM退化校正方法。估计当前帧每个特征点的法向量,并提出一种激光SLAM退化检测算法,当检测到环境退化时,使用两个无人车之间的测距信息对激光SLAM进行退化校正,在位姿图中进一步优化定位结果,并在自主搭建的两个无人车平台上进行测试。研究结果表明,新方法与当前主流激光SLAM方法相比获得了更高的建图效果,证明了新方法能够显著提高激光SLAM在退化场景中的定位效果。展开更多
基金supported by the National Natural Science Foundation of China(62101099)the Chinese Postdoctoral Science Foundation(2021M690558,2022T150100,2018M633352,2019T120825)+3 种基金the Young Elite Scientist Sponsorship Program(YESS20200082)the Aeronautical Science Foundation of China(2022Z017080001)the Open Foundation of Science and Technology on Electronic Information Control Laboratorythe Natural Science Foundation of Sichuan Province(2023NSFSC1386)。
文摘The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condition.However,with the increasing requirement of far-range detection,the time bandwidth product,which is corresponding to radar’s mean power,should be promoted in actual application.Thus,the echo signal generates the scale effect(SE)at large time bandwidth product situation,influencing the intra and inter pulse integration performance.To eliminate SE and correct RM,this paper proposes an effective algorithm,i.e.,scaled location rotation transform(ScLRT).The ScLRT can remove SE to obtain the matching pulse compression(PC)as well as correct RM to complete CI via the location rotation transform,being implemented by seeking the actual rotation angle.Compared to the traditional coherent detection algorithms,Sc LRT can address the SE problem to achieve better detection/estimation capabilities.At last,this paper gives several simulations to assess the viability of ScLRT.
文摘稳定高精度的定位是实现地面无人车辆协同自主行驶的先决条件。激光同时定位与建图(Simultaneous Localization and Mapping,SLAM)技术在缺少几何特征的走廊、隧道、沙漠等场景中难以实现精准定位。为此提出一种无人车蛙跳协同的激光SLAM退化校正方法。估计当前帧每个特征点的法向量,并提出一种激光SLAM退化检测算法,当检测到环境退化时,使用两个无人车之间的测距信息对激光SLAM进行退化校正,在位姿图中进一步优化定位结果,并在自主搭建的两个无人车平台上进行测试。研究结果表明,新方法与当前主流激光SLAM方法相比获得了更高的建图效果,证明了新方法能够显著提高激光SLAM在退化场景中的定位效果。