Abstract: An effective approach was conducted for estimating fracture toughness using the crack opening displacement (COD) method for plasma enhanced chemical vapor deposition (PECVD) coating materials. For this ...Abstract: An effective approach was conducted for estimating fracture toughness using the crack opening displacement (COD) method for plasma enhanced chemical vapor deposition (PECVD) coating materials. For this evaluation, an elastoplastic analysis was used to estimate critical COD values for single edge notched bending (SENB) specimens. The relationship between fracture toughness (Kic) and critical COD for SENB specimens was obtained. Microstructure of the interface between AleO3-TiO2 composite ceramic coatings and AISI 1045 steel substrates was studied by using scanning electron microscope (SEM). Chemical compositions were clarified by energy-dispersive X-ray spectroscopy (EDS). The results show that the interface between of Al203-TiO2 and substrate has mechanical combining. The nanohardness of the coatings can reach 1 200 GPa examined by nanoindentation. The Klc was calculated according to this relationship from critical COD. The bending process produces a significant relationship of COD independent of the axial force applied. Fractographic analysis was conducted to determine the crack length. From the physical analysis of nanoindentation curves, the elastic modulus of 1045/AI2O3-TiO2 is 180 GPa for the 50 μm film. The highest value of fracture toughness for 1045/A1203-TiO2-250 μm is 348 MPa·mv2.展开更多
Critical crack tip opening displacement (CTODc) of concrete using experimental and analytical evaluation with seven different compressive strengths ranging from 30 up to 150 MPa was studied based on two types of fract...Critical crack tip opening displacement (CTODc) of concrete using experimental and analytical evaluation with seven different compressive strengths ranging from 30 up to 150 MPa was studied based on two types of fracture tests:three-point bending (TPB) and wedge splitting (WS).In the tests,the values of CTODc were experimentally recorded using a novel technique,in which fiber Bragg grating (FBG) sensors were used,and two traditional techniques,in which strain gauges and clip gauges were deployed.The values of CTODc of tested concrete were also predicted using two existing analytical formulae proposed by JENQ & SHAH and XU,respectively.It is found that the values of CTODc obtained by both experimental measurements and analytical formulae exhibit a negligible variation as the compressive strength of concrete increases,and the test geometry adopted has little impact on the value of CTODc.Regarding the experimental measurement of CTODc,the clip gauge method generally leads to a larger value of CTODc and shows a more significant scatter as compared with the other two methods,while the strain gauge method leads to a slightly lower CTODc as compared with the FBG sensor method.The analytical formula proposed by JENQ and SHAH is found to generally lead to an overestimation,while the analytical formula proposed by XU shows a good accuracy.展开更多
Backfill mining is one of the most important technical means for controlling strata movement and reducing surface subsidence and environmental damage during exploitation of underground coal resources. Ensuring the sta...Backfill mining is one of the most important technical means for controlling strata movement and reducing surface subsidence and environmental damage during exploitation of underground coal resources. Ensuring the stability of the backfill bodies is the primary prerequisite for maintaining the safety of the backfilling working face, and the loading characteristics of backfill are closely related to the deformation and subsidence of the roof. Elastic thin plate model was used to explore the non-uniform subsidence law of the roof, and then the non-uniform distribution characteristics of backfill bodies’ load were revealed. Through a self-developed non-uniform loading device combined with acoustic emission (AE) and digital image correlation (DIC) monitoring technology, the synergistic dynamic evolution law of the bearing capacity, apparent crack, and internal fracture of cemented coal gangue backfills (CCGBs) under loads with different degrees of non-uniformity was deeply explored. The results showed that: 1) The uniaxial compressive strength (UCS) of CCGB increased and then decreased with an increase in the degree of non-uniformity of load (DNL). About 40% of DNL was the inflection point of DNL-UCS curve and when DNL exceeded 40%, the strength decreased in a cliff-like manner;2) A positive correlation was observed between the AE ringing count and UCS during the loading process of the specimen, which was manifested by a higher AE ringing count of the high-strength specimen. 3) Shear cracks gradually increased and failure mode of specimens gradually changed from “X” type dominated by tension cracks to inverted “Y” type dominated by shear cracks with an increase in DNL, and the crack opening displacement at the peak stress decreased and then increased. The crack opening displacement at 40% of the DNL was the smallest. This was consistent with the judgment of crack size based on the AE b-value, i. e., it showed the typical characteristics of “small b-value-large crack and large b-value-small crack”. The research results are of significance for preventing the instability and failure of backfill.展开更多
基金Project supported by the National Research Foundation of Korea(2011-0030804)the Korea Research Foundation(KRF2009-0076450)funded by the Korea Government(MEST)
文摘Abstract: An effective approach was conducted for estimating fracture toughness using the crack opening displacement (COD) method for plasma enhanced chemical vapor deposition (PECVD) coating materials. For this evaluation, an elastoplastic analysis was used to estimate critical COD values for single edge notched bending (SENB) specimens. The relationship between fracture toughness (Kic) and critical COD for SENB specimens was obtained. Microstructure of the interface between AleO3-TiO2 composite ceramic coatings and AISI 1045 steel substrates was studied by using scanning electron microscope (SEM). Chemical compositions were clarified by energy-dispersive X-ray spectroscopy (EDS). The results show that the interface between of Al203-TiO2 and substrate has mechanical combining. The nanohardness of the coatings can reach 1 200 GPa examined by nanoindentation. The Klc was calculated according to this relationship from critical COD. The bending process produces a significant relationship of COD independent of the axial force applied. Fractographic analysis was conducted to determine the crack length. From the physical analysis of nanoindentation curves, the elastic modulus of 1045/AI2O3-TiO2 is 180 GPa for the 50 μm film. The highest value of fracture toughness for 1045/A1203-TiO2-250 μm is 348 MPa·mv2.
基金Project(50438010) supported by the Key Program of the National Natural Science Foundation of ChinaProject(JGZXJJ2006-13) supported by the Research and Application Programs of Key Technologies for Major Constructions in the South-North Water Transfer Project Construction in China
文摘Critical crack tip opening displacement (CTODc) of concrete using experimental and analytical evaluation with seven different compressive strengths ranging from 30 up to 150 MPa was studied based on two types of fracture tests:three-point bending (TPB) and wedge splitting (WS).In the tests,the values of CTODc were experimentally recorded using a novel technique,in which fiber Bragg grating (FBG) sensors were used,and two traditional techniques,in which strain gauges and clip gauges were deployed.The values of CTODc of tested concrete were also predicted using two existing analytical formulae proposed by JENQ & SHAH and XU,respectively.It is found that the values of CTODc obtained by both experimental measurements and analytical formulae exhibit a negligible variation as the compressive strength of concrete increases,and the test geometry adopted has little impact on the value of CTODc.Regarding the experimental measurement of CTODc,the clip gauge method generally leads to a larger value of CTODc and shows a more significant scatter as compared with the other two methods,while the strain gauge method leads to a slightly lower CTODc as compared with the FBG sensor method.The analytical formula proposed by JENQ and SHAH is found to generally lead to an overestimation,while the analytical formula proposed by XU shows a good accuracy.
基金Project(51925402) supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProject(202303021211060) supported by the Natural Science Research General Program for Shanxi Provincial Basic Research Program,China+1 种基金Project(U22A20169) supported by the Joint Fund Project of National Natural Science Foundation of ChinaProjects(2021SX-TD001, 2021SX-TD002) supported by the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering,China。
文摘Backfill mining is one of the most important technical means for controlling strata movement and reducing surface subsidence and environmental damage during exploitation of underground coal resources. Ensuring the stability of the backfill bodies is the primary prerequisite for maintaining the safety of the backfilling working face, and the loading characteristics of backfill are closely related to the deformation and subsidence of the roof. Elastic thin plate model was used to explore the non-uniform subsidence law of the roof, and then the non-uniform distribution characteristics of backfill bodies’ load were revealed. Through a self-developed non-uniform loading device combined with acoustic emission (AE) and digital image correlation (DIC) monitoring technology, the synergistic dynamic evolution law of the bearing capacity, apparent crack, and internal fracture of cemented coal gangue backfills (CCGBs) under loads with different degrees of non-uniformity was deeply explored. The results showed that: 1) The uniaxial compressive strength (UCS) of CCGB increased and then decreased with an increase in the degree of non-uniformity of load (DNL). About 40% of DNL was the inflection point of DNL-UCS curve and when DNL exceeded 40%, the strength decreased in a cliff-like manner;2) A positive correlation was observed between the AE ringing count and UCS during the loading process of the specimen, which was manifested by a higher AE ringing count of the high-strength specimen. 3) Shear cracks gradually increased and failure mode of specimens gradually changed from “X” type dominated by tension cracks to inverted “Y” type dominated by shear cracks with an increase in DNL, and the crack opening displacement at the peak stress decreased and then increased. The crack opening displacement at 40% of the DNL was the smallest. This was consistent with the judgment of crack size based on the AE b-value, i. e., it showed the typical characteristics of “small b-value-large crack and large b-value-small crack”. The research results are of significance for preventing the instability and failure of backfill.