传统的快速激光雷达里程计与建图(Fast LiDAR odometry and mapping,F-LOAM)算法虽然对特征点进行了两级去畸变处理,但仅对第1阶段的特征点进行去畸变,第2阶段的去畸变主要用于建图,这导致位姿估计的准确性不高。为了解决这一问题,提出...传统的快速激光雷达里程计与建图(Fast LiDAR odometry and mapping,F-LOAM)算法虽然对特征点进行了两级去畸变处理,但仅对第1阶段的特征点进行去畸变,第2阶段的去畸变主要用于建图,这导致位姿估计的准确性不高。为了解决这一问题,提出了一种改进的三级去畸变机制,结合基于体素化网格的分层降采样机制,以提高算法的实时性。经过改进的F-LOAM算法在KITTI数据集上的测试表现出色。三级去畸变机制和分层降采样策略不仅有效降低了计算负担,还确保了特征点的有效性和全局地图的精度。展开更多
针对标准粒子滤波算法在机动目标波达方向(direction of arrival,DOA)随时间快速变化导致跟踪精度下降、实时性变差及多目标跟踪误差大等不足的问题,本文提出了一种改进粒子滤波(particle filter,PF)算法。该算法依据阵列信号处理模型...针对标准粒子滤波算法在机动目标波达方向(direction of arrival,DOA)随时间快速变化导致跟踪精度下降、实时性变差及多目标跟踪误差大等不足的问题,本文提出了一种改进粒子滤波(particle filter,PF)算法。该算法依据阵列信号处理模型和匀速(constant velocity,CV)模型,建立了机动目标跟踪的状态方程和观测方程作为状态空间模型,并在此基础上,借鉴多重信号分类(multiple signal classification,MUSIC)算法谱函数修改了粒子滤波的似然函数,实现了对目标方位的实时动态跟踪。仿真结果表明,与传统子空间类跟踪算法和标准粒子滤波算法相比,本文方法跟踪精度更高,收敛速度更快,抗噪能力及鲁棒性更强,对轨迹交叉的多目标跟踪性能也更优。展开更多
文摘传统的快速激光雷达里程计与建图(Fast LiDAR odometry and mapping,F-LOAM)算法虽然对特征点进行了两级去畸变处理,但仅对第1阶段的特征点进行去畸变,第2阶段的去畸变主要用于建图,这导致位姿估计的准确性不高。为了解决这一问题,提出了一种改进的三级去畸变机制,结合基于体素化网格的分层降采样机制,以提高算法的实时性。经过改进的F-LOAM算法在KITTI数据集上的测试表现出色。三级去畸变机制和分层降采样策略不仅有效降低了计算负担,还确保了特征点的有效性和全局地图的精度。
文摘针对标准粒子滤波算法在机动目标波达方向(direction of arrival,DOA)随时间快速变化导致跟踪精度下降、实时性变差及多目标跟踪误差大等不足的问题,本文提出了一种改进粒子滤波(particle filter,PF)算法。该算法依据阵列信号处理模型和匀速(constant velocity,CV)模型,建立了机动目标跟踪的状态方程和观测方程作为状态空间模型,并在此基础上,借鉴多重信号分类(multiple signal classification,MUSIC)算法谱函数修改了粒子滤波的似然函数,实现了对目标方位的实时动态跟踪。仿真结果表明,与传统子空间类跟踪算法和标准粒子滤波算法相比,本文方法跟踪精度更高,收敛速度更快,抗噪能力及鲁棒性更强,对轨迹交叉的多目标跟踪性能也更优。