期刊文献+

机动目标DOA跟踪粒子滤波算法 被引量:8

Particle Filter Algorithm for DOA Tracking of Maneuvering Targets
在线阅读 下载PDF
导出
摘要 针对标准粒子滤波算法在机动目标波达方向(direction of arrival,DOA)随时间快速变化导致跟踪精度下降、实时性变差及多目标跟踪误差大等不足的问题,本文提出了一种改进粒子滤波(particle filter,PF)算法。该算法依据阵列信号处理模型和匀速(constant velocity,CV)模型,建立了机动目标跟踪的状态方程和观测方程作为状态空间模型,并在此基础上,借鉴多重信号分类(multiple signal classification,MUSIC)算法谱函数修改了粒子滤波的似然函数,实现了对目标方位的实时动态跟踪。仿真结果表明,与传统子空间类跟踪算法和标准粒子滤波算法相比,本文方法跟踪精度更高,收敛速度更快,抗噪能力及鲁棒性更强,对轨迹交叉的多目标跟踪性能也更优。 An improved particle filter(PF)algorithm is proposed to address the problems of tracking precision descend, bad real-time performance and large error against multiple targets tracking due to the direction-of-arrival(DOA)of maneuvering targets changing rapidly.According to the model of array signal processing and constant velocity(CV)model,the state equation and measure equation are built as a state space model to track time-varying DOA of maneuvering target and extended it to multiple targets tracking.Then an improved likelihood function is proposed to improve the performance of traditional DOA estimate real-time dynamic tracking.The modified likelihood function is derived from MUSIC (multiple signal classification)algorithm spectral function.Simulation results show that the proposed algorithm is superior to the traditional subspace tracking algorithms and standard particle filter algorithm through the root mean square error(RMSE )and probability of convergence (PROC)comparisons,improves the performance of multiple DOAs tracking for crossing trajectories and has less tracking error,fast rate of convergence,as well as higher resistance to SNR(signal-to-noise ratio)and robustness.
出处 《信号处理》 CSCD 北大核心 2014年第7期861-866,共6页 Journal of Signal Processing
基金 国家自然科学基金项目(51279043) 国家自然科学基金项目(61201411) 国家自然科学基金项目(51209059) 国家"863"计划资助项目(2013AA09A503) 黑龙江省普通高校青年学术骨干支持计划(1253G019)
关键词 DOA 跟踪 粒子滤波 阵列信号处理 CV 模型 direction of arrival tracking particle filter array signal processing constant velocity model
作者简介 宋德枢 男,1986年3月出生于哈尔滨,哈尔滨工程大学,工学硕士,助理工程师,主要研究方向为粒子滤波、阵列信号处理。E—mail:songds1986@163.com 梁国龙 男,1964年11月出生于吉林农安,哈尔滨工程大学,工学博士,教授,主要研究方向为水声目标探测与定位、水声通信技术。 王燕(通讯作者)女,1973年6月出生于哈尔滨,哈尔滨工程大学,工学博士,教授,主要研究方向为水声定位与导航。
  • 相关文献

参考文献13

  • 1张贤达.现代信号处理[M].北京:清华大学出版社,1993..
  • 2Ronald D. DeGroat. Noniterative subspace tracking[ J]. IEEE Transactions on Signal Processing, 1992, 40(3): 571-577.
  • 3Yang Bin. Projection Approximation Subspace Tracking [J]. IEEE Transactions on Signal Processing, 1995, 43 ( 1 ) :95-107.
  • 4Thierry C, Benoit C, Christian R. Fast adaptive eigenval- ue decomposition: a maximum likelihood approach [ J]. Signal Processing, 2003, 83:307-324.
  • 5应文,李冬海,胡德秀.基于阵列单通道的机动目标DOA跟踪方法[J].信号处理,2012,28(4):539-544. 被引量:5
  • 6胡德秀,赵拥军,白航,张晓娟.一种基于粒子滤波的动目标方位跟踪与波束形成算法[J].电子信息对抗技术,2010,25(5):17-21. 被引量:1
  • 7Gordon N. J, Salmond D. J, Smith A. F. M. A noval ap- proach to nonlinear and non-Gaussian Bayesian state esti- mation[ J]. IEE Processings, 1993, 140(2) : 107-113.
  • 8Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering[ J ]. Statis- tics and Computing, 2000, 10(3) : 197-208.
  • 9淦华东,李志舜,李乐,苏蔿.基于自适应子空间估计的DOA跟踪算法[J].声学技术,2004,23(4):214-217. 被引量:9
  • 10Zhong X. H, Premkumar A. B, Madhukumar A.S. Parti- cle filtering for acoustic source tracking in noise with al- pha-stable process[ J]. IEEE Sensors Journal, 2013, 13 (2) :589-600.

二级参考文献27

  • 1淦华东,李志舜,李乐,苏蔿.基于自适应子空间估计的DOA跟踪算法[J].声学技术,2004,23(4):214-217. 被引量:9
  • 2屈金佑,游志刚,张剑云.基于插值恢复多通道信号的单通道测向方法[J].系统工程与电子技术,2007,29(1):21-23. 被引量:10
  • 3JOHNSON D.The Application of Spectral Estimation to Bearing Estimation Problem[J].Proceedings of the IEEE,70(1):1018-1028.
  • 4SANJEEV A M,SIMON M,NEIL G,et al.A Tutorial on Particle Filters for Online Nonlinear/Non-Gauasian Bayesian Tracking[J].IEEE Transactions on Signal Processing,2002,50(2):3-13.
  • 5PITF M,SHEPHARD N.Filtering via Simulation:Auxiliary Particle Filtors[J].Journal of American Statistical Association,1999,94(446):590-599.
  • 6MUSSO C,OUDJANE N,LEGLAND F.Improving Regnlarised Particle Filters[C]//Doucet A,de Freitas J F G,Gordon N J.Sequential Monte Carlo Methods in Practice.New York,Springer-Verlag,2001:23-30.
  • 7GORDON N,SALMOND D,SMITH A F M.Novel Approach to Nonlinear and Non-Gaussian Bayesian State Estimarion[J].Proc Inst Elect Eng F,1993,140:107-113.
  • 8DOUCET A.On Sequential Monte Carlo Methods for Bayesian Filtering[R].Cambridge:University of Cambridge,1998:1236-1247.
  • 9C. M. S. See. High resolution DF with a single channel receiver[ C ]// Statistical Signal Processing, Proceedings of the llth IEEE Signal Processing Workshop on, 2001: 520-523.
  • 10Svantesson T, Wennstrom M. High-resolution direction finding using a switched parasitic antenna[ C ]// Statistical Signal Processing, Proceedings of the 11 th IEEE Signal Processing Workshop on, 2001:508-511.

共引文献33

同被引文献62

  • 1吴孙勇,赵君,董续东,薛秋条,廖桂生.脉冲噪声下多伯努利滤波的单声矢量DOA跟踪[J].信号处理,2020,36(1):139-148. 被引量:5
  • 2方尔正,崔凯.基于矢量水听器的一种时间方位历程目标跟踪方法[J].应用声学,2005,24(5):311-316. 被引量:4
  • 3邓小龙,谢剑英,倪宏伟.Improved Particle Filter for Target Tracking[J].Chinese Journal of Aeronautics,2005,18(2):166-170. 被引量:4
  • 4Nardone S C, Lindgren A G, Gong K F. Fundamental properties and performance of conventional bearings-only target motion analysis[J]. IEEE Trans. Autom. Control, 1984, 29(9): 775-787.
  • 5Gavish M, Weiss A J. Performance analysis of bearing- only target location algorithms [ J ]. IEEE Trans. Aerosp. Electron. Syst. , 1992, 28(3) : 817-828.
  • 6Foy W H. Position-location solutions by Taylor-series es-timation[J]. IEEE Trans. Aerosp. Electron. Syst.~ 1976, 12(2): 187-194.
  • 7Dogancay K. Bearings-only target localization using total least squares [ J ]. Signal Processing, 2005, 85 ( 9 ) : 1695-1710.
  • 8Dogancay K. Relationship between geometric translations and TLS estimation bias in bearings-only target localiza- tion [ J ]. IEEE Transactions on Signal Processing, 2008, 56(3) : 1005-1017.
  • 9Julier S J, Uhlmann J K. Unscented filtering and nonlin- ear estimation[J]. Proceedings of IEEE, 2004, 92(3) : 401-422.
  • 10Kitagawa G. Monte Carlo filter and smoother for non- Gaussian nonlinear state space models [ J ]. Journal of Computational and Graphical Statistics, 1996, 5 ( 1 ) : 1-25.

引证文献8

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部