摘要
针对标准粒子滤波算法在机动目标波达方向(direction of arrival,DOA)随时间快速变化导致跟踪精度下降、实时性变差及多目标跟踪误差大等不足的问题,本文提出了一种改进粒子滤波(particle filter,PF)算法。该算法依据阵列信号处理模型和匀速(constant velocity,CV)模型,建立了机动目标跟踪的状态方程和观测方程作为状态空间模型,并在此基础上,借鉴多重信号分类(multiple signal classification,MUSIC)算法谱函数修改了粒子滤波的似然函数,实现了对目标方位的实时动态跟踪。仿真结果表明,与传统子空间类跟踪算法和标准粒子滤波算法相比,本文方法跟踪精度更高,收敛速度更快,抗噪能力及鲁棒性更强,对轨迹交叉的多目标跟踪性能也更优。
An improved particle filter(PF)algorithm is proposed to address the problems of tracking precision descend, bad real-time performance and large error against multiple targets tracking due to the direction-of-arrival(DOA)of maneuvering targets changing rapidly.According to the model of array signal processing and constant velocity(CV)model,the state equation and measure equation are built as a state space model to track time-varying DOA of maneuvering target and extended it to multiple targets tracking.Then an improved likelihood function is proposed to improve the performance of traditional DOA estimate real-time dynamic tracking.The modified likelihood function is derived from MUSIC (multiple signal classification)algorithm spectral function.Simulation results show that the proposed algorithm is superior to the traditional subspace tracking algorithms and standard particle filter algorithm through the root mean square error(RMSE )and probability of convergence (PROC)comparisons,improves the performance of multiple DOAs tracking for crossing trajectories and has less tracking error,fast rate of convergence,as well as higher resistance to SNR(signal-to-noise ratio)and robustness.
出处
《信号处理》
CSCD
北大核心
2014年第7期861-866,共6页
Journal of Signal Processing
基金
国家自然科学基金项目(51279043)
国家自然科学基金项目(61201411)
国家自然科学基金项目(51209059)
国家"863"计划资助项目(2013AA09A503)
黑龙江省普通高校青年学术骨干支持计划(1253G019)
关键词
DOA
跟踪
粒子滤波
阵列信号处理
CV
模型
direction of arrival tracking
particle filter
array signal processing
constant velocity model
作者简介
宋德枢 男,1986年3月出生于哈尔滨,哈尔滨工程大学,工学硕士,助理工程师,主要研究方向为粒子滤波、阵列信号处理。E—mail:songds1986@163.com
梁国龙 男,1964年11月出生于吉林农安,哈尔滨工程大学,工学博士,教授,主要研究方向为水声目标探测与定位、水声通信技术。
王燕(通讯作者)女,1973年6月出生于哈尔滨,哈尔滨工程大学,工学博士,教授,主要研究方向为水声定位与导航。