The finite element analysis and the optimum design of aluminum profile extrusion mould were investigated using the ANSYS software and its parameterized modeling method. The optimum dimensions of the mould were obtaine...The finite element analysis and the optimum design of aluminum profile extrusion mould were investigated using the ANSYS software and its parameterized modeling method. The optimum dimensions of the mould were obtained. It is found that the stress distribution is very uneven, and the stress convergence is rather severe in the bridge of the aluminum profile extrusion mould. The optimum height of the mould is 70.527 mm, and the optimum radius of dividing holes are 70.182 mm and 80.663 mm. Increasing the height of the mould in the range of 61.282 mm to 70.422 mm can prolong its longevity, but when the height is over 70.422 mm, its longevity reduces.展开更多
Objective Primary liver cancer,predominantly hepatocellular carcinoma(HCC),is a significant global health issue,ranking as the sixth most diagnosed cancer and the third leading cause of cancer-related mortality.Accura...Objective Primary liver cancer,predominantly hepatocellular carcinoma(HCC),is a significant global health issue,ranking as the sixth most diagnosed cancer and the third leading cause of cancer-related mortality.Accurate and early diagnosis of HCC is crucial for effective treatment,as HCC and non-HCC malignancies like intrahepatic cholangiocarcinoma(ICC)exhibit different prognoses and treatment responses.Traditional diagnostic methods,including liver biopsy and contrast-enhanced ultrasound(CEUS),face limitations in applicability and objectivity.The primary objective of this study was to develop an advanced,lightweighted classification network capable of distinguishing HCC from other non-HCC malignancies by leveraging the automatic analysis of brightness changes in CEUS images.The ultimate goal was to create a user-friendly and cost-efficient computer-aided diagnostic tool that could assist radiologists in making more accurate and efficient clinical decisions.Methods This retrospective study encompassed a total of 161 patients,comprising 131 diagnosed with HCC and 30 with non-HCC malignancies.To achieve accurate tumor detection,the YOLOX network was employed to identify the region of interest(ROI)on both B-mode ultrasound and CEUS images.A custom-developed algorithm was then utilized to extract brightness change curves from the tumor and adjacent liver parenchyma regions within the CEUS images.These curves provided critical data for the subsequent analysis and classification process.To analyze the extracted brightness change curves and classify the malignancies,we developed and compared several models.These included one-dimensional convolutional neural networks(1D-ResNet,1D-ConvNeXt,and 1D-CNN),as well as traditional machine-learning methods such as support vector machine(SVM),ensemble learning(EL),k-nearest neighbor(KNN),and decision tree(DT).The diagnostic performance of each method in distinguishing HCC from non-HCC malignancies was rigorously evaluated using four key metrics:area under the receiver operating characteristic(AUC),accuracy(ACC),sensitivity(SE),and specificity(SP).Results The evaluation of the machine-learning methods revealed AUC values of 0.70 for SVM,0.56 for ensemble learning,0.63 for KNN,and 0.72 for the decision tree.These results indicated moderate to fair performance in classifying the malignancies based on the brightness change curves.In contrast,the deep learning models demonstrated significantly higher AUCs,with 1D-ResNet achieving an AUC of 0.72,1D-ConvNeXt reaching 0.82,and 1D-CNN obtaining the highest AUC of 0.84.Moreover,under the five-fold cross-validation scheme,the 1D-CNN model outperformed other models in both accuracy and specificity.Specifically,it achieved accuracy improvements of 3.8%to 10.0%and specificity enhancements of 6.6%to 43.3%over competing approaches.The superior performance of the 1D-CNN model highlighted its potential as a powerful tool for accurate classification.Conclusion The 1D-CNN model proved to be the most effective in differentiating HCC from non-HCC malignancies,surpassing both traditional machine-learning methods and other deep learning models.This study successfully developed a user-friendly and cost-efficient computer-aided diagnostic solution that would significantly enhances radiologists’diagnostic capabilities.By improving the accuracy and efficiency of clinical decision-making,this tool has the potential to positively impact patient care and outcomes.Future work may focus on further refining the model and exploring its integration with multimodal ultrasound data to maximize its accuracy and applicability.展开更多
The group-contribution (GC) methods suffer from a limitation concerning to the prediction of process-related indexes, e.g., thermal efficiency. Recently developed analytical models for thermal efficiency of organic Ra...The group-contribution (GC) methods suffer from a limitation concerning to the prediction of process-related indexes, e.g., thermal efficiency. Recently developed analytical models for thermal efficiency of organic Rankine cycles (ORCs) provide a possibility of overcoming the limitation of the GC methods because these models formulate thermal efficiency as functions of key thermal properties. Using these analytical relations together with GC methods, more than 60 organic fluids are screened for medium-low temperature ORCs. The results indicate that the GC methods can estimate thermal properties with acceptable accuracy (mean relative errors are 4.45%-11.50%);the precision, however, is low because the relative errors can vary from less than 0.1% to 45.0%. By contrast, the GC-based estimation of thermal efficiency has better accuracy and precision. The relative errors in thermal efficiency have an arithmetic mean of about 2.9% and fall within the range of 0-24.0%. These findings suggest that the analytical equations provide not only a direct way of estimating thermal efficiency but an accurate and precise approach to evaluating working fluids and guiding computer-aided molecular design of new fluids for ORCs using GC methods.展开更多
This paper describes the titanium forging processes a pplied in the golf club head forgings. Generally speaking, titanium has poor for geability and therefore the threshold to invest in the titanium forging operatio n...This paper describes the titanium forging processes a pplied in the golf club head forgings. Generally speaking, titanium has poor for geability and therefore the threshold to invest in the titanium forging operatio n is high. Process parameters have been discussed and computer simulation on the forging processes has been conducted and compared with the forging practices. N ormally, titanium rod was preferred billet on titanium golf club head forging, w hich is the case on iron head, but it is not appropriate on wood head because of its large hollow volume. Therefore, a study on wood head forging from titanium plate has been explored and simulation of the forging processes have been conduc ted and shown reasonable results. DEFORM software has been adopted in the study of the forging processes simulation on the titanium golf head forging simulation . Some successful results will be demonstrated in this paper.展开更多
Road horizontal alignment contains three elements: straight line,circular arc,and clothoid.In AutoCAD,clothoid can only be fitted by polyline or spline,and the graphics which are separated from the road data are indep...Road horizontal alignment contains three elements: straight line,circular arc,and clothoid.In AutoCAD,clothoid can only be fitted by polyline or spline,and the graphics which are separated from the road data are independent of each other.Therefore,it is necessary to develop a new curve for road horizontal alignment.Firstly,the differential approximation and series integration methods for clothoid were discussed.Secondly,the geometric formulae for road line which contain the three elements were derived as a whole.Then,the advantages and feasibility of customizing a road line class,which was derived from the curve base class,were analyzed based on ObjectARX(AutoCAD Runtime eXtension) techniques.Finally,the data structure and operations for the road line class were stressed.The experimental results show that the road line can integrate the road elements,graphics and data to implement the graphics-oriented design,which can be widely used in road alignment design.展开更多
文摘The finite element analysis and the optimum design of aluminum profile extrusion mould were investigated using the ANSYS software and its parameterized modeling method. The optimum dimensions of the mould were obtained. It is found that the stress distribution is very uneven, and the stress convergence is rather severe in the bridge of the aluminum profile extrusion mould. The optimum height of the mould is 70.527 mm, and the optimum radius of dividing holes are 70.182 mm and 80.663 mm. Increasing the height of the mould in the range of 61.282 mm to 70.422 mm can prolong its longevity, but when the height is over 70.422 mm, its longevity reduces.
文摘Objective Primary liver cancer,predominantly hepatocellular carcinoma(HCC),is a significant global health issue,ranking as the sixth most diagnosed cancer and the third leading cause of cancer-related mortality.Accurate and early diagnosis of HCC is crucial for effective treatment,as HCC and non-HCC malignancies like intrahepatic cholangiocarcinoma(ICC)exhibit different prognoses and treatment responses.Traditional diagnostic methods,including liver biopsy and contrast-enhanced ultrasound(CEUS),face limitations in applicability and objectivity.The primary objective of this study was to develop an advanced,lightweighted classification network capable of distinguishing HCC from other non-HCC malignancies by leveraging the automatic analysis of brightness changes in CEUS images.The ultimate goal was to create a user-friendly and cost-efficient computer-aided diagnostic tool that could assist radiologists in making more accurate and efficient clinical decisions.Methods This retrospective study encompassed a total of 161 patients,comprising 131 diagnosed with HCC and 30 with non-HCC malignancies.To achieve accurate tumor detection,the YOLOX network was employed to identify the region of interest(ROI)on both B-mode ultrasound and CEUS images.A custom-developed algorithm was then utilized to extract brightness change curves from the tumor and adjacent liver parenchyma regions within the CEUS images.These curves provided critical data for the subsequent analysis and classification process.To analyze the extracted brightness change curves and classify the malignancies,we developed and compared several models.These included one-dimensional convolutional neural networks(1D-ResNet,1D-ConvNeXt,and 1D-CNN),as well as traditional machine-learning methods such as support vector machine(SVM),ensemble learning(EL),k-nearest neighbor(KNN),and decision tree(DT).The diagnostic performance of each method in distinguishing HCC from non-HCC malignancies was rigorously evaluated using four key metrics:area under the receiver operating characteristic(AUC),accuracy(ACC),sensitivity(SE),and specificity(SP).Results The evaluation of the machine-learning methods revealed AUC values of 0.70 for SVM,0.56 for ensemble learning,0.63 for KNN,and 0.72 for the decision tree.These results indicated moderate to fair performance in classifying the malignancies based on the brightness change curves.In contrast,the deep learning models demonstrated significantly higher AUCs,with 1D-ResNet achieving an AUC of 0.72,1D-ConvNeXt reaching 0.82,and 1D-CNN obtaining the highest AUC of 0.84.Moreover,under the five-fold cross-validation scheme,the 1D-CNN model outperformed other models in both accuracy and specificity.Specifically,it achieved accuracy improvements of 3.8%to 10.0%and specificity enhancements of 6.6%to 43.3%over competing approaches.The superior performance of the 1D-CNN model highlighted its potential as a powerful tool for accurate classification.Conclusion The 1D-CNN model proved to be the most effective in differentiating HCC from non-HCC malignancies,surpassing both traditional machine-learning methods and other deep learning models.This study successfully developed a user-friendly and cost-efficient computer-aided diagnostic solution that would significantly enhances radiologists’diagnostic capabilities.By improving the accuracy and efficiency of clinical decision-making,this tool has the potential to positively impact patient care and outcomes.Future work may focus on further refining the model and exploring its integration with multimodal ultrasound data to maximize its accuracy and applicability.
基金Project(51778626) supported by the National Natural Science Foundation of China
文摘The group-contribution (GC) methods suffer from a limitation concerning to the prediction of process-related indexes, e.g., thermal efficiency. Recently developed analytical models for thermal efficiency of organic Rankine cycles (ORCs) provide a possibility of overcoming the limitation of the GC methods because these models formulate thermal efficiency as functions of key thermal properties. Using these analytical relations together with GC methods, more than 60 organic fluids are screened for medium-low temperature ORCs. The results indicate that the GC methods can estimate thermal properties with acceptable accuracy (mean relative errors are 4.45%-11.50%);the precision, however, is low because the relative errors can vary from less than 0.1% to 45.0%. By contrast, the GC-based estimation of thermal efficiency has better accuracy and precision. The relative errors in thermal efficiency have an arithmetic mean of about 2.9% and fall within the range of 0-24.0%. These findings suggest that the analytical equations provide not only a direct way of estimating thermal efficiency but an accurate and precise approach to evaluating working fluids and guiding computer-aided molecular design of new fluids for ORCs using GC methods.
文摘This paper describes the titanium forging processes a pplied in the golf club head forgings. Generally speaking, titanium has poor for geability and therefore the threshold to invest in the titanium forging operatio n is high. Process parameters have been discussed and computer simulation on the forging processes has been conducted and compared with the forging practices. N ormally, titanium rod was preferred billet on titanium golf club head forging, w hich is the case on iron head, but it is not appropriate on wood head because of its large hollow volume. Therefore, a study on wood head forging from titanium plate has been explored and simulation of the forging processes have been conduc ted and shown reasonable results. DEFORM software has been adopted in the study of the forging processes simulation on the titanium golf head forging simulation . Some successful results will be demonstrated in this paper.
基金Project(51108049)supported by the National Natural Science Foundation of ChinaProject(kfj090207)supported by Open Fund of Key Laboratory of Road Structure and Material of Ministry of Transport(Changsha University of Science and Technology),China
文摘Road horizontal alignment contains three elements: straight line,circular arc,and clothoid.In AutoCAD,clothoid can only be fitted by polyline or spline,and the graphics which are separated from the road data are independent of each other.Therefore,it is necessary to develop a new curve for road horizontal alignment.Firstly,the differential approximation and series integration methods for clothoid were discussed.Secondly,the geometric formulae for road line which contain the three elements were derived as a whole.Then,the advantages and feasibility of customizing a road line class,which was derived from the curve base class,were analyzed based on ObjectARX(AutoCAD Runtime eXtension) techniques.Finally,the data structure and operations for the road line class were stressed.The experimental results show that the road line can integrate the road elements,graphics and data to implement the graphics-oriented design,which can be widely used in road alignment design.