期刊文献+
共找到6,572篇文章
< 1 2 250 >
每页显示 20 50 100
Functional cartography of heterogeneous combat networks using operational chain-based label propagation algorithm
1
作者 CHEN Kebin JIANG Xuping +2 位作者 ZENG Guangjun YANG Wenjing ZHENG Xue 《Journal of Systems Engineering and Electronics》 2025年第5期1202-1215,共14页
To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartogra... To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartography of heterogeneous combat networks based on the operational chain”(FCBOC).In this framework,a functional module detection algorithm named operational chain-based label propagation algorithm(OCLPA),which considers the cooperation and interactions among combat entities and can thus naturally tackle network heterogeneity,is proposed to identify the functional modules of the network.Then,the nodes and their modules are classified into different roles according to their properties.A case study shows that FCBOC can provide a simplified description of disorderly information of combat networks and enable us to identify their functional and structural network characteristics.The results provide useful information to help commanders make precise and accurate decisions regarding the protection,disintegration or optimization of combat networks.Three algorithms are also compared with OCLPA to show that FCBOC can most effectively find functional modules with practical meaning. 展开更多
关键词 functional cartography heterogeneous combat network functional module label propagation algorithm operational chain
在线阅读 下载PDF
rTMS Improves Cognitive Function and Brain Network Connectivity in Patients With Alzheimer’s Disease
2
作者 XU Gui-Zhi LIU Lin +4 位作者 GUO Miao-Miao WANG Tian GAO Jiao-Jiao JI Yong WANG Pan 《生物化学与生物物理进展》 北大核心 2025年第8期2131-2145,共15页
Objective Repetitive transcranial magnetic stimulation(rTMS)has demonstrated efficacy in enhancing neurocognitive performance in Alzheimer’s disease(AD),but the neurobiological mechanisms linking synaptic pathology,n... Objective Repetitive transcranial magnetic stimulation(rTMS)has demonstrated efficacy in enhancing neurocognitive performance in Alzheimer’s disease(AD),but the neurobiological mechanisms linking synaptic pathology,neural oscillatory dynamics,and brain network reorganization remain unclear.This investigation seeks to systematically evaluate the therapeutic potential of rTMS as a non-invasive neuromodulatory intervention through a multimodal framework integrating clinical assessments,molecular profiling,and neurophysiological monitoring.Methods In this prospective double-blind trial,12 AD patients underwent a 14-day protocol of 20 Hz rTMS,with comprehensive multimodal assessments performed pre-and postintervention.Cognitive functioning was quantified using the mini-mental state examination(MMSE)and Montreal cognitive assessment(MOCA),while daily living capacities and neuropsychiatric profiles were respectively evaluated through the activities of daily living(ADL)scale and combined neuropsychiatric inventory(NPI)-Hamilton depression rating scale(HAMD).Peripheral blood biomarkers,specifically Aβ1-40 and phosphorylated tau(p-tau181),were analyzed to investigate the effects of rTMS on molecular metabolism.Spectral power analysis was employed to investigate rTMS-induced modulations of neural rhythms in AD patients,while brain network analyses incorporating topological properties were conducted to examine stimulus-driven network reorganization.Furthermore,systematic assessment of correlations between cognitive scale scores,blood biomarkers,and network characteristics was performed to elucidate cross-modal therapeutic associations.Results Clinically,MMSE and MOCA scores improved significantly(P<0.05).Biomarker showed that Aβ1-40 level increased(P<0.05),contrasting with p-tau181 reduction.Moreover,the levels of Aβ1-40 were positively correlated with MMSE and MOCA scores.Post-intervention analyses revealed significant modulations in oscillatory power,characterized by pronounced reductions in delta(P<0.05)and theta bands(P<0.05),while concurrent enhancements were observed in alpha,beta,and gamma band activities(all P<0.05).Network analysis revealed frequency-specific reorganization:clustering coefficients were significantly decreased in delta,theta,and alpha bands(P<0.05),while global efficiency improvement was exclusively detected in the delta band(P<0.05).The alpha band demonstrated concurrent increases in average nodal degree(P<0.05)and characteristic path length reduction(P<0.05).Further research findings indicate that the changes in the clinical scale HAMD scores before and after rTMS stimulation are negatively correlated with the changes in the blood biomarkers Aβ1-40 and p-tau181.Additionally,the changes in the clinical scales MMSE and MoCA scores were negatively correlated with the changes in the node degree of the alpha frequency band and negatively correlated with the clustering coefficient of the delta frequency band.However,the changes in MMSE scores are positively correlated with the changes in global efficiency of both the delta and alpha frequency bands.Conclusion 20 Hz rTMS targeting dorsolateral prefrontal cortex(DLPFC)significantly improves cognitive function and enhances the metabolic clearance ofβ-amyloid and tau proteins in AD patients.This neurotherapeutic effect is mechanistically associated with rTMS-mediated frequency-selective neuromodulation,which enhances the connectivity of oscillatory networks through improved neuronal synchronization and optimized topological organization of functional brain networks.These findings not only support the efficacy of rTMS as an adjunctive therapy for AD but also underscore the importance of employing multiple assessment methods—including clinical scales,blood biomarkers,and EEG——in understanding and monitoring the progression of AD.This research provides a significant theoretical foundation and empirical evidence for further exploration of rTMS applications in AD treatment. 展开更多
关键词 transcranial magnetic stimulation Alzheimer’s disease power spectral density ELECTROENCEPHALOGRAM brain functional network
在线阅读 下载PDF
A diagnosis method based on graph neural networks embedded with multirelationships of intrinsic mode functions for multiple mechanical faults
3
作者 Bin Wang Manyi Wang +3 位作者 Yadong Xu Liangkuan Wang Shiyu Chen Xuanshi Chen 《Defence Technology(防务技术)》 2025年第8期364-373,共10页
Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types o... Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types of signals or faults in individual mechanical components while being constrained by data types and inherent characteristics.To address the limitations of existing methods,we propose a fault diagnosis method based on graph neural networks(GNNs)embedded with multirelationships of intrinsic mode functions(MIMF).The approach introduces a novel graph topological structure constructed from the features of intrinsic mode functions(IMFs)of monitored signals and their multirelationships.Additionally,a graph-level based fault diagnosis network model is designed to enhance feature learning capabilities for graph samples and enable flexible application across diverse signal sources and devices.Experimental validation with datasets including independent vibration signals for gear fault detection,mixed vibration signals for concurrent gear and bearing faults,and pressure signals for hydraulic cylinder leakage characterization demonstrates the model's adaptability and superior diagnostic accuracy across various types of signals and mechanical systems. 展开更多
关键词 Fault diagnosis Graph neural networks Graph topological structure Intrinsic mode functions Feature learning
在线阅读 下载PDF
Assessing target optical camouflage effects using brain functional networks:A feasibility study
4
作者 Zhou Yu Li Xue +4 位作者 Weidong Xu Jun Liu Qi Jia Jianghua Hu Jidong Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期69-77,共9页
Brain functional networks model the brain's ability to exchange information across different regions,aiding in the understanding of the cognitive process of human visual attention during target searching,thereby c... Brain functional networks model the brain's ability to exchange information across different regions,aiding in the understanding of the cognitive process of human visual attention during target searching,thereby contributing to the advancement of camouflage evaluation.In this study,images with various camouflage effects were presented to observers to generate electroencephalography(EEG)signals,which were then used to construct a brain functional network.The topological parameters of the network were subsequently extracted and input into a machine learning model for training.The results indicate that most of the classifiers achieved accuracy rates exceeding 70%.Specifically,the Logistic algorithm achieved an accuracy of 81.67%.Therefore,it is possible to predict target camouflage effectiveness with high accuracy without the need to calculate discovery probability.The proposed method fully considers the aspects of human visual and cognitive processes,overcomes the subjectivity of human interpretation,and achieves stable and reliable accuracy. 展开更多
关键词 Camouflage effect evaluation Electroencephalography(EEG) Brain functional networks Machine learning
在线阅读 下载PDF
Adaptive functional link network control of near-space vehicles with dynamical uncertainties 被引量:5
5
作者 Yanli Du Qingxian Wu Changsheng Jiang Jie Wen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第5期868-876,共9页
The control law design for a near-space hypersonic vehicle(NHV) is highly challenging due to its inherent nonlinearity,plant uncertainties and sensitivity to disturbances.This paper presents a novel functional link ... The control law design for a near-space hypersonic vehicle(NHV) is highly challenging due to its inherent nonlinearity,plant uncertainties and sensitivity to disturbances.This paper presents a novel functional link network(FLN) control method for an NHV with dynamical thrust and parameter uncertainties.The approach devises a new partially-feedback-functional-link-network(PFFLN) adaptive law and combines it with the nonlinear generalized predictive control(NGPC) algorithm.The PFFLN is employed for approximating uncertainties in flight.Its weights are online tuned based on Lyapunov stability theorem for the first time.The learning process does not need any offline training phase.Additionally,a robust controller with an adaptive gain is designed to offset the approximation error.Finally,simulation results show a satisfactory performance for the NHV attitude tracking,and also illustrate the controller's robustness. 展开更多
关键词 adaptive control system dynamical uncertainties partially feedback functional link network near-space vehicle.
在线阅读 下载PDF
Functional network and its application to extract information from chaotic communication
6
作者 李卫斌 焦李成 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2004年第1期46-49,共4页
In chaotic communication system, the useful signal is hidden in chaotic signal, so the general method does not work well. Due to the random feature of chaotic signal, a functional networkbased method is presented. In ... In chaotic communication system, the useful signal is hidden in chaotic signal, so the general method does not work well. Due to the random feature of chaotic signal, a functional networkbased method is presented. In this method, the neural functions are selected from some complete function set for the functional network to reconstruct the chaotic signal, so the useful signal hidden in chaotic background is extracted. In addition, its learning algorithm is presented here and the example proves its good preformance. 展开更多
关键词 neural network functional network chaotic communication extract.
在线阅读 下载PDF
DnCNN-RM:an adaptive SAR image denoising algorithm based on residual networks
7
作者 OU Hai-ning LI Chang-di +3 位作者 ZENG Rui-bin WU Yan-feng LIU Jia-ning CHENG Peng 《中国光学(中英文)》 北大核心 2025年第5期1209-1218,共10页
In the field of image processing,the analysis of Synthetic Aperture Radar(SAR)images is crucial due to its broad range of applications.However,SAR images are often affected by coherent speckle noise,which significantl... In the field of image processing,the analysis of Synthetic Aperture Radar(SAR)images is crucial due to its broad range of applications.However,SAR images are often affected by coherent speckle noise,which significantly degrades image quality.Traditional denoising methods,typically based on filter techniques,often face challenges related to inefficiency and limited adaptability.To address these limitations,this study proposes a novel SAR image denoising algorithm based on an enhanced residual network architecture,with the objective of enhancing the utility of SAR imagery in complex electromagnetic environments.The proposed algorithm integrates residual network modules,which directly process the noisy input images to generate denoised outputs.This approach not only reduces computational complexity but also mitigates the difficulties associated with model training.By combining the Transformer module with the residual block,the algorithm enhances the network's ability to extract global features,offering superior feature extraction capabilities compared to CNN-based residual modules.Additionally,the algorithm employs the adaptive activation function Meta-ACON,which dynamically adjusts the activation patterns of neurons,thereby improving the network's feature extraction efficiency.The effectiveness of the proposed denoising method is empirically validated using real SAR images from the RSOD dataset.The proposed algorithm exhibits remarkable performance in terms of EPI,SSIM,and ENL,while achieving a substantial enhancement in PSNR when compared to traditional and deep learning-based algorithms.The PSNR performance is enhanced by over twofold.Moreover,the evaluation of the MSTAR SAR dataset substantiates the algorithm's robustness and applicability in SAR denoising tasks,with a PSNR of 25.2021 being attained.These findings underscore the efficacy of the proposed algorithm in mitigating speckle noise while preserving critical features in SAR imagery,thereby enhancing its quality and usability in practical scenarios. 展开更多
关键词 SAR images image denoising residual networks adaptive activation function
在线阅读 下载PDF
An Adaptive Identification and Control SchemeUsing Radial Basis Function Networks 被引量:2
8
作者 Chen Zengqiang He Jiangfeng Yuan Zhuzhi (Department of Computer and System Science, Nankai University, Tianjin 300071, P. R. China)(Received July 12, 1998) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1999年第1期54-61,共8页
In this paper, adaptive identification and control of nonlinear dynamical systems are investigated using radial basis function networks (RBF). Firstly, a novel approach to train the RBF is introduced, which employs an... In this paper, adaptive identification and control of nonlinear dynamical systems are investigated using radial basis function networks (RBF). Firstly, a novel approach to train the RBF is introduced, which employs an adaptive fuzzy generalized learning vector quantization (AFGLVQ) technique and recursive least squares algorithm with variable forgetting factor (VRLS). The AFGLVQ adjusts the centers of the RBF while the VRLS updates the connection weights of the network. The identification algorithm has the properties of rapid convergence and persistent adaptability that make it suitable for real-time control. Secondly, on the basis of the one-step ahead RBF predictor, the control law is optimized iteratively through a numerical stable Davidon's least squares-based (SDLS) minimization approach. Four nonlinear examples are simulated to demonstrate the effectiveness of the identification and control algorithms. 展开更多
关键词 Neural networks Adaptive control Nonlinear control Radial basis function networks Recursive least squares.
在线阅读 下载PDF
Synchronization of chaos using radial basis functions neural networks 被引量:2
9
作者 Ren Haipeng Liu Ding 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期83-88,100,共7页
The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response syst... The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response system can be implemented by employing the RBFNN model and state feedback control. In this case, the exact mathematical model, which is the precondition for the conventional method, is unnecessary for implementing synchronization. The effect of the model error is investigated and a corresponding theorem is developed. The effect of the parameter perturbations and the measurement noise is investigated through simulations. The simulation results under different conditions show the effectiveness of the method. 展开更多
关键词 Chaos synchronization Radial basis function neural networks Model error Parameter perturbation Measurement noise.
在线阅读 下载PDF
Adaptive integral dynamic surface control based on fully tuned radial basis function neural network 被引量:2
10
作者 Li Zhou Shumin Fei Changsheng Jiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第6期1072-1078,共7页
An adaptive integral dynamic surface control approach based on fully tuned radial basis function neural network (FTRBFNN) is presented for a general class of strict-feedback nonlinear systems,which may possess a wid... An adaptive integral dynamic surface control approach based on fully tuned radial basis function neural network (FTRBFNN) is presented for a general class of strict-feedback nonlinear systems,which may possess a wide class of uncertainties that are not linearly parameterized and do not have any prior knowledge of the bounding functions.FTRBFNN is employed to approximate the uncertainty online,and a systematic framework for adaptive controller design is given by dynamic surface control. The control algorithm has two outstanding features,namely,the neural network regulates the weights,width and center of Gaussian function simultaneously,which ensures the control system has perfect ability of restraining different unknown uncertainties and the integral term of tracking error introduced in the control law can eliminate the static error of the closed loop system effectively. As a result,high control precision can be achieved.All signals in the closed loop system can be guaranteed bounded by Lyapunov approach.Finally,simulation results demonstrate the validity of the control approach. 展开更多
关键词 adaptive control integral dynamic surface control fully tuned radial basis function neural network.
在线阅读 下载PDF
DETERMINING THE STRUCTURES AND PARAMETERS OF RADIAL BASIS FUNCTION NEURAL NETWORKS USING IMPROVED GENETIC ALGORITHMS 被引量:1
11
作者 Meiqin Liu Jida Chen 《Journal of Central South University》 SCIE EI CAS 1998年第2期68-73,共6页
The method of determining the structures and parameters of radial basis function neural networks(RBFNNs) using improved genetic algorithms is proposed. Akaike′s information criterion (AIC) with generalization error t... The method of determining the structures and parameters of radial basis function neural networks(RBFNNs) using improved genetic algorithms is proposed. Akaike′s information criterion (AIC) with generalization error term is used as the best criterion of optimizing the structures and parameters of networks. It is shown from the simulation results that the method not only improves the approximation and generalization capability of RBFNNs ,but also obtain the optimal or suboptimal structures of networks. 展开更多
关键词 RADIAL BASIS function neural network GENETIC algorithms Akaike′s information CRITERION OVERFITTING
在线阅读 下载PDF
Research on motion compensation method based on neural network of radial basis function
12
作者 Zuo Yunbo 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第S2期215-218,共4页
The machining precision not only depends on accurate mechanical structure but also depends on motion compensation method. If manufacturing precision of mechanical structure cannot be improved, the motion compensation ... The machining precision not only depends on accurate mechanical structure but also depends on motion compensation method. If manufacturing precision of mechanical structure cannot be improved, the motion compensation is a reasonable way to improve motion precision. A motion compensation method based on neural network of radial basis function(RBF) was presented in this paper. It utilized the infinite approximation advantage of RBF neural network to fit the motion error curve. The best hidden neural quantity was optimized by training the motion error data and calculating the total sum of squares. The best curve coefficient matrix was got and used to calculate motion compensation values. The experiments showed that the motion errors could be reduced obviously by utilizing the method in this paper. 展开更多
关键词 MOTION COMPENSATION NEURAL network RADIAL BASIS function
在线阅读 下载PDF
Function Analyses of Geographic Information System on Rural Distribution Network
13
作者 FANG Junlong FAN Yongcun +1 位作者 ZHANG Chunmei GU Shumin 《Journal of Northeast Agricultural University(English Edition)》 CAS 2006年第2期178-181,共4页
With the actuality and characteristic and requirement of rural power enterprise distribution network management, this article introduced the function of geographic information system on the framework of distribution n... With the actuality and characteristic and requirement of rural power enterprise distribution network management, this article introduced the function of geographic information system on the framework of distribution network, in order to develop rural distribution network. 展开更多
关键词 function analyses geographic information system distribution network
在线阅读 下载PDF
Trajectory tracking guidance of interceptor via prescribed performance integral sliding mode with neural network disturbance observer 被引量:1
14
作者 Wenxue Chen Yudong Hu +1 位作者 Changsheng Gao Ruoming An 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期412-429,共18页
This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system... This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots. 展开更多
关键词 BP network neural Integral sliding mode control(ISMC) Missile defense Prescribed performance function(PPF) State observer Tracking guidance system
在线阅读 下载PDF
A New Type of Fuzzy Membership Function Designed for Interval Type-2 Fuzzy Neural Network 被引量:3
15
作者 Jiajun Wang 《自动化学报》 EI CSCD 北大核心 2017年第8期1425-1433,共9页
关键词 模糊隶属函数 模糊神经网络 区间 设计 识别性能 非线性系统 不确定性 调整参数
在线阅读 下载PDF
SFC placement and dynamic resource allocation based on VNF performance-resource function and service requirement in cloud-edge environment
16
作者 HAN Yingchao MENG Weixiao FAN Wentao 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期906-921,共16页
With the continuous development of network func-tions virtualization(NFV)and software-defined networking(SDN)technologies and the explosive growth of network traffic,the requirement for computing resources in the netw... With the continuous development of network func-tions virtualization(NFV)and software-defined networking(SDN)technologies and the explosive growth of network traffic,the requirement for computing resources in the network has risen sharply.Due to the high cost of edge computing resources,coordinating the cloud and edge computing resources to improve the utilization efficiency of edge computing resources is still a considerable challenge.In this paper,we focus on optimiz-ing the placement of network services in cloud-edge environ-ments to maximize the efficiency.It is first proved that,in cloud-edge environments,placing one service function chain(SFC)integrally in the cloud or at the edge can improve the utilization efficiency of edge resources.Then a virtual network function(VNF)performance-resource(P-R)function is proposed to repre-sent the relationship between the VNF instance computing per-formance and the allocated computing resource.To select the SFCs that are most suitable to deploy at the edge,a VNF place-ment and resource allocation model is built to configure each VNF with its particular P-R function.Moreover,a heuristic recur-sive algorithm is designed called the recursive algorithm for max edge throughput(RMET)to solve the model.Through simula-tions on two scenarios,it is verified that RMET can improve the utilization efficiency of edge computing resources. 展开更多
关键词 cloud-edge environment virtual network function(VNF)performance-resource(P-R)function edge resource allo-cation
在线阅读 下载PDF
Constructing Hash Function Based on Coupled Network Generated by Logarithmic Map
17
作者 SONG Yu-rong JIANG Guo-ping 《南京邮电大学学报(自然科学版)》 2010年第1期6-10,共5页
In this paper,based on coupled network generated by chaotic logarithmic map,a novel algorithm for constructing hash functions is proposed,which can transform messages and can establish a mapping from the transformed m... In this paper,based on coupled network generated by chaotic logarithmic map,a novel algorithm for constructing hash functions is proposed,which can transform messages and can establish a mapping from the transformed messages to the coupled matrix of the network.The network model is carefully designed to ensure the network dynamics to be chaotic.Through the chaotic iterations of the network,quantization and exclusive-or (XOR) operations,the algorithm can construct hash value with arbitrary length.It is shown by simulations that the algorithm is extremely sensitive to the initial values and the coupled matrix of the network,and has excellent performance in one-way,confusion and diffusion,and collision resistance. 展开更多
关键词 计算机网络 应用程序 网络安全 网络协议
在线阅读 下载PDF
基于CDD-YOLO的轻量级低光照目标检测算法 被引量:4
18
作者 史丽晨 杨超 +1 位作者 刘雪超 周星宇 《计算机工程与应用》 北大核心 2025年第6期106-117,共12页
针对低照度场景下目标检测算法面临的检测精度不高、计算成本以及内存消耗大等问题,提出一种改进YOLOv8的轻量级低光照目标检测网络模型CDD-YOLO。提出一个基于坐标注意力机制的多尺度卷积模块,提取不同感受野纹理特征并捕获空间位置之... 针对低照度场景下目标检测算法面临的检测精度不高、计算成本以及内存消耗大等问题,提出一种改进YOLOv8的轻量级低光照目标检测网络模型CDD-YOLO。提出一个基于坐标注意力机制的多尺度卷积模块,提取不同感受野纹理特征并捕获空间位置之间的远程依赖关系;将动态头部框架集成到检测头中,减少复杂背景和尺度变化的干扰;基于动态非单调聚焦机制设计边界框回归损失函数,提升锚框回归路径和质量,提高模型对光照变化和噪声的适应能力;通过剪枝算法修剪模型中的冗余参数,实现模型轻量化。采用自建数据集、ExDark和VOC数据集进行实验验证,实验结果表明该方法与主流算法相比具有更好的检测效果,在计算复杂度与检测精度之间实现了更好的平衡。 展开更多
关键词 低照度 YOLOv8 注意力机制 损失函数 轻量化网络
在线阅读 下载PDF
植物热激转录因子研究进展与展望 被引量:2
19
作者 郭秀林 戚润思 +6 位作者 孟祥照 张华宁 马贞玉 段硕楠 李国良 刘子会 尚忠林 《华北农学报》 北大核心 2025年第1期1-13,共13页
作为植物抵御多种逆境胁迫的重要调节因子,植物热激转录因子(Hsf)家族基因数目多,结构、特性和功能复杂多样。植物Hsf不仅通过直接转录调控热激蛋白和相关基因的表达,参与对多种逆境胁迫的响应和适应过程,还介导植物诸多生命活动过程。... 作为植物抵御多种逆境胁迫的重要调节因子,植物热激转录因子(Hsf)家族基因数目多,结构、特性和功能复杂多样。植物Hsf不仅通过直接转录调控热激蛋白和相关基因的表达,参与对多种逆境胁迫的响应和适应过程,还介导植物诸多生命活动过程。自20世纪80年代酵母Hsf被首先克隆以来,多个物种的Hsf家族被识别和研究,模式植物番茄和拟南芥Hsf研究比较早且相对深入,研究主要集中在HsfA族,B族研究较少,C族报道更少。随着全球气候变化,极端高温事件频发,已严重威胁小麦、玉米等粮食作物的产量和品质,深入研究作物耐热性机制从而挖掘功能基因、通过生物技术方法改良作物的耐热性,是抵抗高温逆境的关键。大田作物中Hsf家族数目大小不等,基因组复杂,研究起步晚。为此,植物生理与分子生物学研究室从2009年开始对作物Hsf家族基因进行研究,依据最新的基因组信息,确定了家族基因数目及核酸和蛋白质结构特性、明确了家族基因的时空表达特性及其对多种非生物逆境的响应规律。克隆获得多个基因并借助遗传转化和基因编辑技术创制转基因材料和突变体,对其耐热性以及抗逆性调控功能多层面进行了鉴定,并对下游调控机制进行了深入解析。研究不仅丰富了大田作物耐热性调控理论基础,也为作物耐热性研究和生物育种提供优异新种质。目前,关于Hsf的研究主要集中在功能鉴定和对下游基因的转录调控方面,其上游哪些组分通过何种方式介导Hsf参与耐热性调控方面的研究还缺乏证据,机制尚不清楚。基于本研究室多年来对小麦、玉米Hsf家族的研究结果,结合他人的相关研究报道,详述了近年来植物Hsf在抗逆性响应和适应过程中调控功能、机制及其主要研究进展,以期为深入阐明Hsf家族的作用及其调控网络提供理论依据,为耐热生物育种挖掘强效的基因资源和备选位点。 展开更多
关键词 植物热激转录因子 非生物胁迫 功能与机制 调控网络
在线阅读 下载PDF
一种新型激活函数的机床能耗预测神经网络研究 被引量:1
20
作者 刘晶晶 刘业峰 《控制工程》 北大核心 2025年第3期492-499,共8页
构造一种适用于反向传播(backpropagation,BP)神经网络的新型激活函数Lfun(logarithmic series function),并使用基于该函数的BP神经网络进行机床能耗状态的预测。首先,分析Sigmoid系列和ReLU系列激活函数的特点和缺陷,结合对数函数,构... 构造一种适用于反向传播(backpropagation,BP)神经网络的新型激活函数Lfun(logarithmic series function),并使用基于该函数的BP神经网络进行机床能耗状态的预测。首先,分析Sigmoid系列和ReLU系列激活函数的特点和缺陷,结合对数函数,构造了一种非线性分段含参数激活函数。该函数可导且光滑、导数形式简单、单调递增、输出均值为零,且通过可变参数使函数形式更灵活;其次,通过数值仿真实验在公共数据集上将Lfun函数与Sigmoid、ReLU、tanh、Leaky_ReLU和ELU函数的性能进行对比;最后,使用基于Lfun函数的BP神经网络进行机床能耗状态的预测。实验结果表明,使用Lfun函数的BP神经网络相较于使用其他几种常用激活函数的网络具有更好的性能。 展开更多
关键词 激活函数 BP神经网络 机床能耗预测 SIGMOID函数 ReLU函数
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部