We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of Volterra type. The fractional derivative is described in the Caputo sense. We provide a rigorou...We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of Volterra type. The fractional derivative is described in the Caputo sense. We provide a rigorous error analysis for the collection method, which shows that the errors of the approximate solution decay exponentially in L^∞ norm and weighted L^2-norm. The numerical examples are given to illustrate the theoretical results.展开更多
基于声学边界元基本理论,并结合Chebyshev谱方法进行了声散射数值计算研究.采用2阶边界单元,谱点离散选用不包含边界的CG(Chebyshev-Gauss)配点法,克服了传统边界元在表面单元节点处出现的法向及法向导数不连续的现象;应用CHIEF(Combine...基于声学边界元基本理论,并结合Chebyshev谱方法进行了声散射数值计算研究.采用2阶边界单元,谱点离散选用不包含边界的CG(Chebyshev-Gauss)配点法,克服了传统边界元在表面单元节点处出现的法向及法向导数不连续的现象;应用CHIEF(Combined Helmholtz Integral Equation Fomulation)方法进行了数值非唯一性处理,提高了计算的精度.与传统边界元方法进行了精度和效率的对比分析,证明该方法具有计算快速、精度高的特点.展开更多
基金supported by NSFC Project(11301446,11271145)China Postdoctoral Science Foundation Grant(2013M531789)+3 种基金Specialized Research Fund for the Doctoral Program of Higher Education(2011440711009)Program for Changjiang Scholars and Innovative Research Team in University(IRT1179)Project of Scientific Research Fund of Hunan Provincial Science and Technology Department(2013RS4057)the Research Foundation of Hunan Provincial Education Department(13B116)
文摘We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of Volterra type. The fractional derivative is described in the Caputo sense. We provide a rigorous error analysis for the collection method, which shows that the errors of the approximate solution decay exponentially in L^∞ norm and weighted L^2-norm. The numerical examples are given to illustrate the theoretical results.
文摘基于声学边界元基本理论,并结合Chebyshev谱方法进行了声散射数值计算研究.采用2阶边界单元,谱点离散选用不包含边界的CG(Chebyshev-Gauss)配点法,克服了传统边界元在表面单元节点处出现的法向及法向导数不连续的现象;应用CHIEF(Combined Helmholtz Integral Equation Fomulation)方法进行了数值非唯一性处理,提高了计算的精度.与传统边界元方法进行了精度和效率的对比分析,证明该方法具有计算快速、精度高的特点.