期刊文献+

非线性Fokker-Planck方程的Hermite谱配置方法 被引量:1

Hermite Spectral Collocation Method for Nonlinear Fokker-Planck Equation
在线阅读 下载PDF
导出
摘要 以Hermite-Gauss节点为配置点,用谱配置方法求数值解,逼近无界区域上的非线性Fokker-Planck方程初值问题的理论解。给出算法格式,数值运算表明所提算法格式的有效性和高精度。所给算法尤其适合于非线性问题,也可用于求解无界区域上非线性常微分方程定解问题。 Spectral collocation method is employed to obtain the numerical solutions of initial value problem of nonlinear Fokker-Planck equation on unbounded interval, which approximate those of theory solutions, in which Hermitc-Gauss nodes arc used to collocate nodes. Format of algorithm is given and implemented. Numerical results demonstrate its efficiency and high accuracy of this approach. Especially, it is much easier to deal with nonlinear Fokker-Planck equation. The proposed method is also applicable to nonlinear ordinary differential equations defined on certain unbounded domains.
作者 王天军 杨森
出处 《安徽工业大学学报(自然科学版)》 CAS 2012年第4期381-384,共4页 Journal of Anhui University of Technology(Natural Science)
基金 国家自然科学基金项目(11171227) 河南省教育厅自然科学基金项目(2011B110014) 河南科技大学博士启动基金项目(09001263)
关键词 非线性Fokker-Planck方程 初值问题 谱配置方法 Hermite-Gauss节点 nonlinear Fokker-Planck equation initial value problem Hermite-Gauss nodes spectral collocation method
作者简介 王天军(1963-),男,河南息县人,博士,副教授,研究方向为偏微分方程数值解。
  • 相关文献

参考文献13

  • 1Chavanis P H, Laurcncot P, Lcmou M. Chapman-Enskog derivation of the gcncralized Smoluchowski equation[J]. Physica A, 2004, 341:145-164.
  • 2Frank T D. Nonlinear Fokker-Planck equations: Fundanmentals and applications, Springer Series in Synergetics[M]. Berlin: Springcr-Vcrlag, 2005.
  • 3Kaniadakis G. Generalized Boltzmann equation describing the dynamics ofbosons and fermions[J]. Physics Letters A, 1995,203(4): 229-234.
  • 4Escobedo M, Mischief S. On a quantum Boltzmann equation for a gas of photons[J]. Journal dos Mathematiqucs Puros et Appliquots, 2001,80(5):471-515.
  • 5Lu X G. On spatially homogeneous solutions of a modified Boltzmann equation for Fermi-Dirac particles[J] Journal of Statistical Physics, 2001,105(1/2):353-388.
  • 6Carrillo J A, Rosado J, Salvarani F. 1D nonlinear Fokker-Planck equations for fermions and bosons[J]. ApplieA Mathvmatics Letters, 2008,21(2):148-154.
  • 7Fok J C M, Guo Ben-Yu, Tang Tao. Combined Hermite spectral-finite difference method for The Fokker-Planck equation[J]. Mathematics of Computation, 2002,71 (240): 1497-1528.
  • 8Guo B Y, Wang T J. Composite Generalized Laguerre-Legendre spectral method with domain decomposition and its application to Fokker-Planck equation in an infinite channel[J]. Mathematics of Computation, 2009,78(265): 129-151.
  • 9Wang Tian-jun, Guo Ben=yu. Composite geaeralize.d Laguerre=Legendre pseudospectral method for Fokker-Planck equation in an finite channel[J]. Journal Applied Numerical Mathematics, 2008,58(10): 1448-1466.
  • 10王天军,贾丽蕊.非线性热传导方程的Lagrange插值逼近[J].河南科技大学学报(自然科学版),2011,32(2):68-71. 被引量:8

二级参考文献18

  • 1马成芬,张庆德.2种基于Lagrange插值多项式的多密钥共享方案[J].云南大学学报(自然科学版),2008,30(S1):261-263. 被引量:1
  • 2徐千里,徐水清.Lagrange插值法在一类非齐线性常微分方程中的应用[J].湖南城市学院学报(自然科学版),2005,14(4):34-36. 被引量:2
  • 3王婷.热传导方程的一类有限差分区域分解显-隐算法[J].山东大学学报(理学版),2006,41(5):20-25. 被引量:2
  • 4Auteri F,Parolini N, Quartapelle L. Essential Imposition of Neumann Condition in Galerkin-Legendre Elliptic Solvers [ J ]. Comp Phys,2003,185 ( 2 ) :427 - 444.
  • 5Wang Tianjun, Wang Zhongqing. Error Analysis of Legendre Spectral Method with Essential Imposition of Neumann Boundary [ J ]. Appl Nume Math,2009,59 ( 10 ) : 2444 - 2451.
  • 6Alipanah A, Razzaghi M, Dehghan M. The Pseudospectral Legendre Method for a Class of Singular Boundary Value Problems Arising in Physiology[ J]. Journal of Vibration and Control ,2010,16 (1):3 -10.
  • 7Shen Jie,Tang Tao. Spectral and High-Order Methods with Applications [ M ]. Beijing:Science Press ,2006.
  • 8Guenther R B, Lee J W. Partial Differential Equations of Mathematical Physics and Integral Equations[ M ]. Mineola: Dover Publications, 2005.
  • 9Sauer T.数值分析[M].吴兆金,王国英,范红军,译.北京:人民邮电出版社,2010.
  • 10Alipanah A, Razzaghi M, Dehghan M. The Pseudospectral Legendre Method for a Class of Singular Boundary Value Problems Arising in Physiology[ J ]. J Vibra and Cont,2010,16( 1 ) :3 -10.

共引文献14

同被引文献4

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部