期刊文献+
共找到972篇文章
< 1 2 49 >
每页显示 20 50 100
Adaptive multi-feature tracking in particle swarm optimization based particle filter framework 被引量:7
1
作者 Miaohui Zhang Ming Xin Jie Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第5期775-783,共9页
This paper proposes a particle swarm optimization(PSO) based particle filter(PF) tracking framework,the embedded PSO makes particles move toward the high likelihood area to find the optimal position in the state t... This paper proposes a particle swarm optimization(PSO) based particle filter(PF) tracking framework,the embedded PSO makes particles move toward the high likelihood area to find the optimal position in the state transition stage,and simultaneously incorporates the newest observations into the proposal distribution in the update stage.In the proposed approach,likelihood measure functions involving multiple features are presented to enhance the performance of model fitting.Furthermore,the multi-feature weights are self-adaptively adjusted by a PSO algorithm throughout the tracking process.There are three main contributions.Firstly,the PSO algorithm is fused into the PF framework,which can efficiently alleviate the particles degeneracy phenomenon.Secondly,an effective convergence criterion for the PSO algorithm is explored,which can avoid particles getting stuck in local minima and maintain a greater particle diversity.Finally,a multi-feature weight self-adjusting strategy is proposed,which can significantly improve the tracking robustness and accuracy.Experiments performed on several challenging public video sequences demonstrate that the proposed tracking approach achieves a considerable performance. 展开更多
关键词 particle filter particle swarm optimization adaptive weight adjustment visual tracking
在线阅读 下载PDF
Hybrid optimization algorithm based on chaos,cloud and particle swarm optimization algorithm 被引量:29
2
作者 Mingwei Li Haigui Kang +1 位作者 Pengfei Zhou Weichiang Hong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第2期324-334,共11页
As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid ... As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid optimization algorithm based on the cat mapping,the cloud model and PSO is proposed.While the PSO algorithm evolves a certain of generations,this algorithm applies the cat mapping to implement global disturbance of the poorer individuals,and employs the cloud model to execute local search of the better individuals;accordingly,the obtained best individuals form a new swarm.For this new swarm,the evolution operation is maintained with the PSO algorithm,using the parameter of pop distr to balance the global and local search capacity of the algorithm,as well as,adopting the parameter of mix gen to control mixing times of the algorithm.The comparative analysis is carried out on the basis of 4 functions and other algorithms.It indicates that this algorithm shows faster convergent speed and better solving precision for solving functions particularly those high-dimensional multi-modal functions.Finally,the suggested values are proposed for parameters pop distr and mix gen applied to different dimension functions via the comparative analysis of parameters. 展开更多
关键词 particle swarm optimization(PSO) chaos theory cloud model hybrid optimization
在线阅读 下载PDF
Service composition based on discrete particle swarm optimization in military organization cloud cooperation 被引量:2
3
作者 An Zhang Haiyang Sun +1 位作者 Zhili Tang Yuan Yuan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第3期590-601,共12页
This paper addresses the problem of service composition in military organization cloud cooperation(MOCC). Military service providers(MSP) cooperate together to provide military resources for military service users... This paper addresses the problem of service composition in military organization cloud cooperation(MOCC). Military service providers(MSP) cooperate together to provide military resources for military service users(MSU). A group of atom services, each of which has its level of quality of service(QoS), can be combined together into a certain structure to form a composite service. Since there are a large number of atom services having the same function, the atom service is selected to participate in the composite service so as to fulfill users' will. In this paper a method based on discrete particle swarm optimization(DPSO) is proposed to tackle this problem. The method aims at selecting atom services from service repositories to constitute the composite service, satisfying the MSU's requirement on QoS. Since the QoS criteria include location-aware criteria and location-independent criteria, this method aims to get the composite service with the highest location-aware criteria and the best-match location-independent criteria. Simulations show that the DPSO has a better performance compared with the standard particle swarm optimization(PSO) and genetic algorithm(GA). 展开更多
关键词 service composition cloud cooperation discrete particle swarm optimization(DPSO)
在线阅读 下载PDF
Improved particle swarm optimization algorithm for fuzzy multi-class SVM 被引量:18
4
作者 Ying Li Bendu Bai Yanning Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期509-513,共5页
An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from its... An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from itself and the best one but also from the mean value of some other particles.In addition,adaptive mutation was introduced to reduce the rate of premature convergence.The experimental results on the synthetic aperture radar(SAR) target recognition of moving and stationary target acquisition and recognition(MSTAR) dataset and character recognition of MNIST database show that the improved algorithm is feasible and effective for fuzzy multi-class SVM training. 展开更多
关键词 particle swarm optimization(PSO) fuzzy support vector machine(FSVM) adaptive mutation multi-classification.
在线阅读 下载PDF
Multi-objective workflow scheduling in cloud system based on cooperative multi-swarm optimization algorithm 被引量:2
5
作者 YAO Guang-shun DING Yong-sheng HAO Kuang-rong 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第5期1050-1062,共13页
In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired ... In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired by division of the same species into multiple swarms for different objectives and information sharing among these swarms in nature, each physical machine in the data center is considered a swarm and employs improved multi-objective particle swarm optimization to find out non-dominated solutions with one objective in MSMOOA. The particles in each swarm are divided into two classes and adopt different strategies to evolve cooperatively. One class of particles can communicate with several swarms simultaneously to promote the information sharing among swarms and the other class of particles can only exchange information with the particles located in the same swarm. Furthermore, in order to avoid the influence by the elastic available resources, a manager server is adopted in the cloud data center to collect the available resources for scheduling. The quality of the proposed method with other related approaches is evaluated by using hybrid and parallel workflow applications. The experiment results highlight the better performance of the MSMOOA than that of compared algorithms. 展开更多
关键词 MULTI-OBJECTIVE WORKFLOW scheduling multi-swarm optimization particle swarm optimization (PSO) cloud computing system
在线阅读 下载PDF
Multiple-target tracking with adaptive sampling intervals for phased-array radar 被引量:10
6
作者 Zhenkai Zhang Jianjiang Zhou +2 位作者 Fei Wang Weiqiang Liu Hongbing Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第5期760-766,共7页
A novel adaptive sampling interval algorithm for multitarget tracking is presented. This algorithm which is based on interacting multiple models incorporates the grey relational grade (GRG) into the particle swarm o... A novel adaptive sampling interval algorithm for multitarget tracking is presented. This algorithm which is based on interacting multiple models incorporates the grey relational grade (GRG) into the particle swarm optimization (PSO). Firstly, the desired tracking accuracy is set for each target. Secondly, sampling intervals are selected as particles, and then the advantage of the GRG is taken as the measurement function for resource management. Meanwhile, the fitness value of the PSO is used to measure the difference between desired tracking accuracy and estimated tracking accuracy. Finally, it is suggested that the radar should track the target whose prediction value of the next sampling interval is the smallest. Simulations show that the proposed method improves both the tracking accuracy and tracking efficiency of the phased-array radar. 展开更多
关键词 target tracking adaptive sampling interval (ASI) particle swarm optimization (PSO) grey relational grade (GRG) phased-array radar.
在线阅读 下载PDF
基于自适应等效能耗最小的燃料电池船舶能量管理策略 被引量:1
7
作者 许晓彦 曹伟 韩冰 《太阳能学报》 北大核心 2025年第3期108-115,共8页
为实现等效能耗最小策略中等效因子的实时调整,提出一种基于自适应等效能耗最小的能量管理策略。首先,设计一种基于多种群自适应协同粒子群优化算法的最优等效因子提取方法,该方法为双层优化的结构。在上层优化中,以船舶的运行成本、储... 为实现等效能耗最小策略中等效因子的实时调整,提出一种基于自适应等效能耗最小的能量管理策略。首先,设计一种基于多种群自适应协同粒子群优化算法的最优等效因子提取方法,该方法为双层优化的结构。在上层优化中,以船舶的运行成本、储能系统最终电量和初始电量误差最小为目标函数,求解燃料电池系统和储能系统的最优运行轨迹;在下层优化中,建立等效因子的优化模型,提取最优等效因子的分布。然后,建立以系统状态参数为输入、等效因子为输出的神经网络模型。利用最优的等效因子作为训练样本,对神经网络模型进行训练。最后,将神经网络模型与等效能耗最小策略相结合,可实现等效因子的实时调整。在Matlab/Simulink中搭建船舶混合能源系统的仿真模型,对基于自适应等效能耗最小的能量管理策略进行验证。仿真结果表明,与基于恒定等效因子的等效能耗最小策略相比,储能系统的最终电量更接近初始值,氢气的总消耗量降低1.98%。 展开更多
关键词 燃料电池船 能量管理策略 神经网络 等效因子 多种群自适应协同的粒子群优化算法
在线阅读 下载PDF
自适应混合粒子群优化DMC及其在脱硫系统中的应用
8
作者 王惠杰 李绍鑫 +1 位作者 许小刚 秦志明 《华北电力大学学报(自然科学版)》 北大核心 2025年第4期125-133,142,共10页
为提高脱硫系统动态矩阵算法(DMC)的控制精度,使控制器参数能够自动寻优,提出采用自适应混合粒子群算法优化DMC中的参数。首先以粒子群算法为基础,加入自适应权重和局部因子构建自适应混合粒子群,并通过Griewank函数验证自适应混合粒子... 为提高脱硫系统动态矩阵算法(DMC)的控制精度,使控制器参数能够自动寻优,提出采用自适应混合粒子群算法优化DMC中的参数。首先以粒子群算法为基础,加入自适应权重和局部因子构建自适应混合粒子群,并通过Griewank函数验证自适应混合粒子群的寻优性能;接着搭建DMC模型,使用自适应混合粒子群算法对DMC的控制时域、优化时域等参数进行迭代寻优,最后以浆液密度和机组负荷作为干扰因素对脱硫系统进行控制仿真及抗干扰测试。以某电厂600 MW机组配置脱硫塔浆液pH值为研究对象,将电厂实际运行数据作为输入检验控制系统特性。仿真结果表明:与传统PID控制以及Smith预估控制相比,自适应混合粒子群优化DMC控制下浆液pH值上升时间更短,控制更集中,波动范围小,在设定值±0.02范围内覆盖率达到99.41%。 展开更多
关键词 自适应混合粒子群算法 动态矩阵 PH值 控制优化
在线阅读 下载PDF
基于语义相似度与改进PSO算法的云制造能力需求模型与匹配策略研究
9
作者 李晓波 郭银章 《现代制造工程》 北大核心 2025年第6期30-44,共15页
针对云计算环境下智能制造资源服务化共享中制造能力与任务需求之间的搜索匹配与服务组合问题,提出了一种基于语义相似度与改进粒子群优化(Particle Swarm Optimization,PSO)算法的云制造能力需求模型与匹配策略。首先,在提出云制造能... 针对云计算环境下智能制造资源服务化共享中制造能力与任务需求之间的搜索匹配与服务组合问题,提出了一种基于语义相似度与改进粒子群优化(Particle Swarm Optimization,PSO)算法的云制造能力需求模型与匹配策略。首先,在提出云制造能力需求模型的基础上,采用领域本体树的概念提出了概念相似度、句子相似度和数值相似度的计算方法,实现了基于语义相似度的云制造能力需求智能化服务搜索;然后,针对云制造能力的服务组合问题,在分析了制造能力服务质量(Quality of Service,QoS)属性的基础上,采用层次分析法(Analytic Hierarchy Process,AHP)将各个属性进行归一化求和,给出了一种基于改进PSO算法的服务组合方法;最后,通过实验对比发现所提出的方法优于现有方法并实现了云制造能力需求智能匹配原型系统。 展开更多
关键词 云制造能力 任务需求 搜索匹配 服务组合 语义相似度 改进粒子群优化算法
在线阅读 下载PDF
基于敏感度分析的球面磁悬浮飞轮电机多目标分层优化设计
10
作者 朱志莹 焦金帅 +2 位作者 徐政 孟凡浩 安聪 《电气工程学报》 北大核心 2025年第2期130-139,共10页
针对球面磁悬浮飞轮电机的参数优化设计问题,提出一种基于参数敏感度分析的多目标分层优化设计方案。在介绍电机运行机理及电磁分析的基础上,以转矩、悬浮力为优化目标,通过对电机结构参数进行敏感度分析,利用构建敏感度方程,将电机参... 针对球面磁悬浮飞轮电机的参数优化设计问题,提出一种基于参数敏感度分析的多目标分层优化设计方案。在介绍电机运行机理及电磁分析的基础上,以转矩、悬浮力为优化目标,通过对电机结构参数进行敏感度分析,利用构建敏感度方程,将电机参数划分为主敏感度参数和次敏感度参数,针对主敏感度参数和次敏感度参数,依次分别采用支持向量机进行非参数建模,并通过惯性权重自适应改变的混沌粒子群算法进行寻优;最后,通过有限元仿真验证了所提算法的有效性,结果表明优化后电机转矩提高6%,悬浮力提高27.99%。 展开更多
关键词 球面磁悬浮飞轮电机 参数敏感度分析 分层优化 支持向量机 惯性权重自适应改变的混沌粒子群算法
在线阅读 下载PDF
矿用自卸车座椅空气弹簧悬架参数辨识与优化
11
作者 刘红华 阳洁颖 刘翠雅 《机械设计与制造》 北大核心 2025年第5期217-222,228,共7页
矿用自卸车的座椅空气弹簧悬架系统缓震效果直接影响乘坐舒适性。这里提出一种运用自适应混沌粒子群优化算法来解决针对矿用自卸车座椅空气弹簧悬挂系统的非线性刚度和阻尼参数的识别处理。借助将混沌引入粒子的运动过程中,与标准粒子... 矿用自卸车的座椅空气弹簧悬架系统缓震效果直接影响乘坐舒适性。这里提出一种运用自适应混沌粒子群优化算法来解决针对矿用自卸车座椅空气弹簧悬挂系统的非线性刚度和阻尼参数的识别处理。借助将混沌引入粒子的运动过程中,与标准粒子群算法相比表现出不同,使粒子群在稳定状态与混沌状态之间交替向着最优点收敛,同时根据粒子运行状态动态调整惯性权重。提高了算法的适应性,明显提升收敛速度并提高了精度,有效避免了局部最优得出,进行整车试验验证了该方法的有效性。结果表明,导致乘坐舒适性下降的主要原因是由于原系统中的刚度和阻尼数值不匹配,因此将垂直方向加速度均方根值设为目标,对空气弹簧悬架的阻尼参数和非线性刚度通过遗传算法来进行优化。在优化后,目标值下降了30.4%,显著提高了乘坐舒适性。 展开更多
关键词 非线性 空气弹簧悬架 自适应混沌粒子群优化算法 辨识 优化
在线阅读 下载PDF
基于自适应时域MPC的无人车轨迹跟踪控制
12
作者 丁承君 耿宇坤 +2 位作者 胡健鑫 王逸桐 王镇林 《科学技术与工程》 北大核心 2025年第23期9883-9891,共9页
为了提高无人车在不同路面附着系数和车速下的轨迹跟踪控制性能,提出一种自适应时域模型预测控制(model predictive control,MPC)算法。首先,基于三自由度车辆动力学模型设计MPC轨迹跟踪控制器。其次,引入融合准反射学习和高斯变异的粒... 为了提高无人车在不同路面附着系数和车速下的轨迹跟踪控制性能,提出一种自适应时域模型预测控制(model predictive control,MPC)算法。首先,基于三自由度车辆动力学模型设计MPC轨迹跟踪控制器。其次,引入融合准反射学习和高斯变异的粒子群优化算法(particle swarm optimization,PSO)对时域参数优化,获得不同工况下的离线最优时域数据集。然后,利用自适应神经模糊推理系统(adaptive network-based fuzzy inference system,ANFIS)对数据集训练,得到能够自适应调整时域的控制系统。最后,通过Carsim和Simulink联合仿真和实车验证。结果表明:自适应时域MPC控制器在不同工况下的轨迹跟踪精度和稳定性均得到了较大幅度的提高,且该算法具有较好的实用性。 展开更多
关键词 模型预测控制 轨迹跟踪 粒子群优化算法(PSO) 自适应神经模糊推理系统(ANFIS)
在线阅读 下载PDF
基于相似日和CAPSO-SNN的光伏发电功率预测 被引量:33
13
作者 陈通 孙国强 +4 位作者 卫志农 臧海祥 孙永辉 Kwok W Cheung 李慧杰 《电力自动化设备》 EI CSCD 北大核心 2017年第3期66-71,共6页
针对光伏发电功率预测精度不高的问题,提出一种基于相似日和云自适应粒子群优化(CAPSO)算法优化Spiking神经网络(SNN)的发电功率预测模型。考虑到季节类型、天气类型和气象等主要影响因素,提出以综合相似度指标进行相似日选取;以SNN强... 针对光伏发电功率预测精度不高的问题,提出一种基于相似日和云自适应粒子群优化(CAPSO)算法优化Spiking神经网络(SNN)的发电功率预测模型。考虑到季节类型、天气类型和气象等主要影响因素,提出以综合相似度指标进行相似日选取;以SNN强大的计算能力和其善于处理时间序列问题的特点为基础,结合CAPSO算法搜索的随机性和稳定性优化SNN的多突触连接权值,减少对权值的约束,提高算法的收敛精度。根据某光伏电站的实测功率数据对所提模型进行测试和评估,结果表明,该模型比传统预测模型具有更高的预测精度和更好的适用性。 展开更多
关键词 光伏发电 功率预测 SPIKING神经网络 云自适应粒子群优化算法 相似日选取
在线阅读 下载PDF
基于CAPSO算法的修正炮弹分数阶控制器设计 被引量:12
14
作者 鲍雪 王大志 杨永生 《仪器仪表学报》 EI CAS CSCD 北大核心 2015年第11期2556-2562,共7页
为了提高修正炮弹系统模型的控制品质,采用分数阶控制器以取得更优的控制效果。针对分数阶控制器参数整定时大都需要公式推导、计算量大等问题,提出一种基于混沌自适应粒子群优化算法(CAPSO)并用于修正炮弹分数阶控制器的设计。将混沌... 为了提高修正炮弹系统模型的控制品质,采用分数阶控制器以取得更优的控制效果。针对分数阶控制器参数整定时大都需要公式推导、计算量大等问题,提出一种基于混沌自适应粒子群优化算法(CAPSO)并用于修正炮弹分数阶控制器的设计。将混沌算法与惯性权重调整的粒子群算法融合,对粒子群进行混沌初始化并对陷入局部最优的粒子进行混沌搜索,同时引入惯性权重非线性调整策略提高了算法的收敛精度,得到全局最优解。利用CAPSO算法对分数阶PIλDμ控制器的参数进行整定,并用于修正炮弹俯仰角稳定回路的控制中。通过仿真实验,验证了该优化算法的可行性。仿真结果表明,CAPSO算法在修正炮弹分数阶控制器的参数整定方面优于主导极点法、粒子群优化算法(PSO)等算法,与PSO算法相比调节时间减少了1.139 s、超调量减小了11.84%,具有收敛速度快、超调量小、稳定性好、抗干扰性强等特点;经CAPSO算法优化的分数阶PIλDμ控制器动态响应特性要优于整数阶PID控制器。 展开更多
关键词 分数阶PIλDμ控制器 修正炮弹 混沌自适应粒子群优化算法 惯性权重
在线阅读 下载PDF
基于数字孪生的变压器热点温度预测预警技术研究 被引量:1
15
作者 李佰霖 马云帆 +3 位作者 陈昱锐 罗远林 褚凡武 付文龙 《工程设计学报》 北大核心 2025年第3期281-295,共15页
变压器热点温度对电网系统的可靠性和稳定性有直接影响。针对传统变压器管理模式复杂以及变压器热点温度预测方法存在成本高、计算效率低和计算误差高等问题,提出了一种基于数字孪生的变压器热点温度预测预警技术。首先,搭建变压器数字... 变压器热点温度对电网系统的可靠性和稳定性有直接影响。针对传统变压器管理模式复杂以及变压器热点温度预测方法存在成本高、计算效率低和计算误差高等问题,提出了一种基于数字孪生的变压器热点温度预测预警技术。首先,搭建变压器数字孪生六维模型,实现了系统数据共通、多源融合和虚实交互等功能。然后,构建可承载人工智能与机器学习算法的感知交互驱动型数字孪生系统,并采用混沌自适应粒子群优化(chaotic adaptive particle swarm optimization,CAPSO)算法对BP(back propagation,反向传播)神经网络的权重和阈值进行优化,加快了原始网络的收敛速度,同时建立了基于CAPSO-BP的变压器热点温度预测模型。最后,利用变压器现场监测数据在虚拟引擎平台上进行仿真分析,实现了变压器热点温度预测预警系统各功能的开发应用并验证了预测模型的可行性和有效性。研究结果为数字孪生变压器系统由数字化向智能化转型提供了新的思路和理论依据。 展开更多
关键词 变压器 数字孪生 人工智能 机器学习 混沌自适应粒子群优化 反向传播神经网络 温度预测
在线阅读 下载PDF
基于数据挖掘和CAPSO-SNN的电力作业风险态势感知 被引量:32
16
作者 陈碧云 李弘斌 李滨 《电力自动化设备》 EI CSCD 北大核心 2020年第1期148-155,共8页
随着电力作业安全监控技术的不断发展,电力作业全过程在线信息采集成为可能。以电力作业数据为基础,提出一种基于数据挖掘和云自适应粒子群优化脉冲神经网络(CAPSO-SNN)的电力作业风险态势感知方法。该方法首先从电力作业事故事件数据... 随着电力作业安全监控技术的不断发展,电力作业全过程在线信息采集成为可能。以电力作业数据为基础,提出一种基于数据挖掘和云自适应粒子群优化脉冲神经网络(CAPSO-SNN)的电力作业风险态势感知方法。该方法首先从电力作业事故事件数据库中提炼出所有作业风险影响因素以构建风险影响因素体系,然后通过主成分分析法从中挖掘出作业过程中应重点关注的风险关键要素,再以风险关键要素作为输入参数,通过云自适应粒子群优化脉冲神经网络进行作业风险态势感知的训练和预测。最后,以某电网公司的实际历史作业事故事件为样本,展示了所提方法的应用过程。算例结果表明,该方法不仅适用于分析电力作业的风险组成,还可以在作业过程中有效地感知风险状态信息,跟踪风险发展趋势,有助于实施电力作业风险的全过程精细化态势利导管控。 展开更多
关键词 数据挖掘 态势感知 云自适应粒子群优化 脉冲神经网络 态势利导 电力作业
在线阅读 下载PDF
基于麻雀算法优化的LQR农机横向跟踪控制方法
17
作者 魏世博 吴翔 +2 位作者 王瞧 牛群峰 樊广晓 《中国农机化学报》 北大核心 2025年第6期250-258,298,共10页
路径跟踪在智能农机中至关重要。针对线性二次型调节器(LQR)的系数矩阵Q和R选取困难易造成跟踪精度不佳问题,提出一种基于麻雀算法优化的LQR农机横向跟踪控制方法。首先,以拖拉机二自由度车辆动力学为基础,构建横向跟踪误差模型,并采用... 路径跟踪在智能农机中至关重要。针对线性二次型调节器(LQR)的系数矩阵Q和R选取困难易造成跟踪精度不佳问题,提出一种基于麻雀算法优化的LQR农机横向跟踪控制方法。首先,以拖拉机二自由度车辆动力学为基础,构建横向跟踪误差模型,并采用前馈补偿的方式抑制稳态误差。其次,设定横向误差阈值,一旦超过该误差阈值,将采用麻雀算法对权重系数进行优化调整,以提高路径跟踪精度。最后,运用CarSim—Simulink平台进行联合仿真,通过3种不同曲率的单弯道路径和多弯道正弦路径对农机横向跟踪控制器进行精度测试,并与传统LQR控制器、传统MPC控制器、粒子群优化LQR控制器进行试验对比。结果表明,传统LQR控制器和传统MPC控制器以及粒子群优化LQR控制器在4条路径下平均横向误差分别为0.0667 m、0.0749 m、0.0359 m,而具备麻雀优化功能的控制器平均横向误差最大为0.015 m,具有较好的跟踪效果。 展开更多
关键词 智能农机 横向跟踪 LQR 麻雀算法 自适应权重 粒子群优化
在线阅读 下载PDF
考虑簧下信息的道路过程噪声自适应路面不平度估计研究
18
作者 邹函桐 夏小均 +3 位作者 张红 张志飞 陈浩 贺岩松 《振动与冲击》 北大核心 2025年第14期283-292,共10页
准确获取路面不平度信息对于智能悬架控制至关重要,直接影响汽车动力学性能和舒适性。因此,本文旨在提升路面不平度估计精度,基于4自由度模型,将车身垂向振动、俯仰振动和簧下振动信息作为观测量,使用卡尔曼滤波算法搭建路面不平度估计... 准确获取路面不平度信息对于智能悬架控制至关重要,直接影响汽车动力学性能和舒适性。因此,本文旨在提升路面不平度估计精度,基于4自由度模型,将车身垂向振动、俯仰振动和簧下振动信息作为观测量,使用卡尔曼滤波算法搭建路面不平度估计观测器,同时利用车身垂向加速度信息构建粒子群-支持向量机模型以实现路面等级分类,并基于路面等级设计道路过程噪声协方差矩阵自适应更新算法,提出考虑簧下信息的过程噪声自适应路面不平度估计算法。仿真结果表明,在随机路面和冲击路面下,所提算法相对于常规增广卡尔曼滤波算法在实时路面不平度估计精度上取得一定提升。 展开更多
关键词 增广卡尔曼观测器 粒子群算法优化支持向量机 路面等级识别 过程噪声自适应
在线阅读 下载PDF
云网融合环境下组合服务的动态重构
19
作者 刘坤 张鹏程 +1 位作者 金惠颖 吉顺慧 《计算机工程》 北大核心 2025年第5期206-218,共13页
随着云计算与空天地海一体化通信网络的深度融合,各种复杂应用场景的出现使得组合服务的种类和数量急剧增多,结构也变得复杂。在云网融合环境下,用户移动设备和边缘服务器等硬件能力有限,能耗问题成为组合服务进行动态重构不可忽略的重... 随着云计算与空天地海一体化通信网络的深度融合,各种复杂应用场景的出现使得组合服务的种类和数量急剧增多,结构也变得复杂。在云网融合环境下,用户移动设备和边缘服务器等硬件能力有限,能耗问题成为组合服务进行动态重构不可忽略的重要因素。此外,传统方法并未考虑空天地海不同场景下用户对不同服务质量(QoS)属性需求的差异性,使得组合服务的交付结果并不令人满意。为了解决上述问题,提出一种基于多目标粒子群优化(PSO)的组合服务动态重构方法。该方法首先根据重构原子服务的三维空间地理位置和功能进行聚类,有效解决在云网融合环境下服务规模庞大情况下的搜索空间爆炸问题;然后通过能耗计算模型得到服务调用的综合能耗,并将其作为动态重构的优化目标之一,结合服务的多种QoS属性进行多目标寻优,最终生成符合用户需求且能耗较低的重构方案。实验结果表明,该方法在云网融合环境下节约能耗和应对较大候选服务集规模等方面具有较优性能。 展开更多
关键词 云网融合 多目标粒子群优化算法 组合服务 动态重构 服务质量
在线阅读 下载PDF
基于自适应粒子群的机械臂模糊计算力矩控制
20
作者 李嘉辉 杨建中 +2 位作者 黄思 吴浩天 张青 《组合机床与自动化加工技术》 北大核心 2025年第1期150-154,159,共6页
针对多自由度机械臂控制器在控制参数不能适应系统变化时轨迹跟踪性能不足的问题,提出一种基于自适应粒子群算法的模糊计算力矩控制(APSO-FCTC)。以二连杆机械臂轨迹跟踪为对象,基于拉格朗日法建立动力学模型,设计了用于自适应调整计算... 针对多自由度机械臂控制器在控制参数不能适应系统变化时轨迹跟踪性能不足的问题,提出一种基于自适应粒子群算法的模糊计算力矩控制(APSO-FCTC)。以二连杆机械臂轨迹跟踪为对象,基于拉格朗日法建立动力学模型,设计了用于自适应调整计算力矩控制(CTC)中PID参数的模糊控制器。进一步提出APSO-FCTC方法,通过基于动态适应度数组的自适应粒子群算法实时优化模糊集合的端点值。通过仿真验证了所提出的APSO-FCTC方法在传统CTC方法的控制参数不能适应系统变化时轨迹跟踪的优越性和抗干扰性,且优于单独使用模糊或自适应粒子群的方法。 展开更多
关键词 机械臂 计算力矩 模糊控制 自适应粒子群
在线阅读 下载PDF
上一页 1 2 49 下一页 到第
使用帮助 返回顶部