Power control is an important technique in WCDMA mobile systems for both increasing system capacity and guaranteeing the required QoS (time delay and wireless link transmission quality) of multimedia services. The opt...Power control is an important technique in WCDMA mobile systems for both increasing system capacity and guaranteeing the required QoS (time delay and wireless link transmission quality) of multimedia services. The optimum power control for narrow band CDMA cellular systems is a problem of single threshold optimization. Because these systems have only one type of traffic and have the same QoS requirement. However, WCDMA mobile system should provide multimedia services and different types of traffic have different QoS requirements. Thus, the power control in WCDMA mobile systems isn't a problem of single threshold optimizing, but turns into the optimizing problem of multi-threshold. We analyze the power control problem in WCDMA cellular mobile systems and propose the optimum transmitter power control algorithm. Three criteria to optimize transmitter power levels of multi-thresholds based on grading the priority orders of multimedia services are proposed. Simulation results show that the proposed algorithms are more effective than conventional algorithms and can provide better performance for WCDMA cellular mobile systems.展开更多
The performance of a material is directly affected by its microstructural development during the solidification phase. Discrete cellular automaton (CA) models are widelyused in materials science to simulate and predic...The performance of a material is directly affected by its microstructural development during the solidification phase. Discrete cellular automaton (CA) models are widelyused in materials science to simulate and predict microstructural growth. This review comprehensively explains the developments and applications of CA in solidification structure simulation, including the theoretical underpinnings, computational procedures, software development, and recent advances. Summarizes the potential and limitations of cellular automata in understanding microstructure evolution during solidification, explores the evolution of microstructures during solidification, and adds to our existing knowledge of cellular automaton theory. Finally, the research trend in simulating the evolution of the solidification microstructure using cellular automaton theory is explored.展开更多
Objective The nucleolar protein PES1(Pescadillo homolog 1)plays critical roles in ribosome biogenesis and cell cycle regulation,yet its involvement in cellular senescence remains poorly understood.This study aimed to ...Objective The nucleolar protein PES1(Pescadillo homolog 1)plays critical roles in ribosome biogenesis and cell cycle regulation,yet its involvement in cellular senescence remains poorly understood.This study aimed to comprehensively investigate the functional consequences of PES1 suppression in cellular senescence and elucidate the molecular mechanisms underlying its regulatory role.Methods Initially,we assessed PES1 expression patterns in two distinct senescence models:replicative senescent mouse embryonic fibroblasts(MEFs)and doxorubicin-induced senescent human hepatocellular carcinoma HepG2 cells.Subsequently,PES1 expression was specifically downregulated using siRNA-mediated knockdown in these cell lines as well as additional relevant cell types.Cellular proliferation and senescence were assessed by EdU incorporation and SA-β-gal staining assays,respectively.The expression of senescence-associated proteins(p53,p21,and Rb)and SASP factors(IL-6,IL-1β,and IL-8)were analyzed by Western blot or qPCR.Furthermore,Northern blot and immunofluorescence were employed to evaluate pre-rRNA processing and nucleolar morphology.Results PES1 expression was significantly downregulated in senescent MEFs and HepG2 cells.PES1 knockdown resulted in decreased EdU-positive cells and increased SA-β-gal-positive cells,indicating proliferation inhibition and senescence induction.Mechanistically,PES1 suppression activated the p53-p21 pathway without affecting Rb expression,while upregulating IL-6,IL-1β,and IL-8 production.Notably,PES1 depletion impaired pre-rRNA maturation and induced nucleolar stress,as evidenced by aberrant nucleolar morphology.Conclusion Our findings demonstrate that PES1 deficiency triggers nucleolar stress and promotes p53-dependent(but Rb-independent)cellular senescence,highlighting its crucial role in maintaining nucleolar homeostasis and regulating senescence-associated pathways.展开更多
One-dimensional blast response of continuous-density graded cellular rods was investigated theoretically and numerically. Analytical model based on the rigid-plastic hardening(R-PH) model was used to predict the blast...One-dimensional blast response of continuous-density graded cellular rods was investigated theoretically and numerically. Analytical model based on the rigid-plastic hardening(R-PH) model was used to predict the blast response of density-graded cellular rods. Finite element(FE) analysis was performed using a new model based on the 3 D Voronoi technique. The FE results have a good agreement with the analytical predictions. The blast response and energy absorption of cellular rods with the same mass but different density distributions were examined under different blast loading. As a blast resistance structure, cellular materials with high energy absorption and low impulse transmit is attractive. However, high energy absorption and low impulse transmit cannot be achieved at the same time by changing the density distribution. The energy absorption capacity increases with the initial blast pressure and characteristic time of the exponentially decaying blast loading. By contract, when the blast loading exceeds the resistance capacity of cellular material, the transmitted stress will be enhanced which is detrimental to the structure being protected.展开更多
In order to analyze the impact of stretching-segment on the saturated flow rate of signalized intersection approach, an improved cellular automation model was proposed to estimate its saturated flow rate. The NaSch mo...In order to analyze the impact of stretching-segment on the saturated flow rate of signalized intersection approach, an improved cellular automation model was proposed to estimate its saturated flow rate. The NaSch model was improved by adding different slow probabilities, turning deceleration rules and modified lane changing rules. The relationship between the saturated flow rate of stretching-segments and adjacent lanes was tested in numerical simulation. The length of stretching-segment, cycle length and green time were selected as impact factors of the cellular automation model. The simulation result indicates that the geometrics design of stretching-segment and the traffic signal timing scenario have major effects on the saturated flow rate of the intersection approach. The saturated flow rate will continually increase with increasing stretching-segment length until it reaches a threshold. After reaching the threshold, the stretching-segment can be treated as a separate lane. The green time is approximately linearly related to the threshold length of the stretching-segment. An optimum cycle length exists when the length of the stretching-segment is not long enough, and it is approximately linearly related to the length of stretching-segment.展开更多
The dynamic recrystallization(DRX) process of hot compressed aluminium alloy 7050 was predicted using cellular automaton(CA) combined with topology deformation. The hot deformatation characteristics of aluminium alloy...The dynamic recrystallization(DRX) process of hot compressed aluminium alloy 7050 was predicted using cellular automaton(CA) combined with topology deformation. The hot deformatation characteristics of aluminium alloy 7050 were investigated by hot uniaxial compression tests in order to obtain the material parameters used in the CA model. The influences of process parameters(strain, strain rate and temperature) on the fraction of DRX and the average recrystallization grain(R-grain) size were investigated and discussed. It is found that larger stain, higher temperature and lower strain rate(less than 0.1 s^(–1)) are beneficial to the increasing fraction of DRX. And the deformation temperature affects the mean R-grain size much more greatly than other parameters. It is also noted that there is a critical strain for the occurrence of DRX which is related to strain rate and temperature. In addition, it is shown that the CA model with topology deformation is able to simulate the microstructural evolution and the flow behavior of aluminium alloy 7050 material under various deformation conditions.展开更多
The prediction of microstructure evolution plays an important role in the design of forging process. In the present work, the cellular automaton (CA) program was developed to simulate the process of dynamic recrystall...The prediction of microstructure evolution plays an important role in the design of forging process. In the present work, the cellular automaton (CA) program was developed to simulate the process of dynamic recrystallization (DRX) for aluminium alloy 7050. The material constants in CA models, including dislocation density, nucleation rate and grain growth, were determined by the isothermal compress tests on Gleeble 1500 machine. The model of dislocation density was obtained by linear regression method based on the experimental results. The influences of the deformation parameters on the percentage of DRX and the mean grain size for aluminium alloy 7050 were investigated in details by means of CA simulation. The simulation results show that, as temperature increases from 350 to 450 ℃ at a strain rate of 0.01 s?1, the percentage of DRX also increases greatly and the mean grain size decreases from 50 to 39.3 μm. The mean size of the recrystallied grains (R-grains) mainly depends on the Zener-Hollomon parameter. To obtain fine grain, the desired deformation temperature is determined from 400 to 450 ℃.展开更多
In order to present the microstructures of dynamic recrystallization(DRX) in different deformation zones of hot extruded NiTi shape memory alloy(SMA) pipe coupling,a simulation approach combining finite element method...In order to present the microstructures of dynamic recrystallization(DRX) in different deformation zones of hot extruded NiTi shape memory alloy(SMA) pipe coupling,a simulation approach combining finite element method(FEM) with cellular automaton(CA) was developed and the relationship between the macroscopic field variables and the microscopic internal variables was established.The results show that there exists a great distinction among the microstructures in different zones of pipe coupling because deformation histories of these regions are diverse.Large plastic deformation may result in fine recrystallized grains,whereas the recrystallized grains may grow very substantially if there is a rigid translation during the deformation,even if the final plastic strain is very large.As a consequence,the deformation history has a significant influence on the evolution path of the DRX as well as the final microstructures of the DRX,including the morphology,the mean grain size and the recrystallization fraction.展开更多
Memristor with memory properties can be applied to connection points(synapses)between cells in a cellular neural network(CNN).This paper highlights memristor crossbar-based multilayer CNN(MCM-CNN)and its application t...Memristor with memory properties can be applied to connection points(synapses)between cells in a cellular neural network(CNN).This paper highlights memristor crossbar-based multilayer CNN(MCM-CNN)and its application to edge detection.An MCM-CNN is designed by adopting a memristor crossbar composed of a pair of memristors.MCM-CNN based on the memristor crossbar with changeable weight is suitable for edge detection of a binary image and a color image considering its characteristics of programmablization and compactation.Figure of merit(FOM)is introduced to evaluate the proposed structure and several traditional edge detection operators for edge detection results.Experiment results show that the FOM of MCM-CNN is three times more than that of the traditional edge detection operators.展开更多
The roundabouts are widely used in China,some of which have central islands as scenic spots.The crosswalks connecting to the central islands,normally full of pedestrians,have negative impact on roundabout capability a...The roundabouts are widely used in China,some of which have central islands as scenic spots.The crosswalks connecting to the central islands,normally full of pedestrians,have negative impact on roundabout capability and pedestrian safety.Therefore,this study proposes a fuzzy cellular automata(FCA)model to explore the safety and efficiency impacts of pedestrian-vehicle conflicts at a two-lane roundabout.To reason the decision-making process of individual drivers before crosswalks,membership functions in the fuzzy inference system were calibrated with field data conducted in Changsha,China.Using specific indicators of efficiency and safety performance,it was shown that circulating vehicles can move smoothly in low traffic flow,but the roundabout system is prone to the traffic congestion if traffic flow reaches to a certain level.Also,the high yielding rate of drivers has a negative impact on the traffic efficiency but can improve pedestrian safety.Furthermore,a pedestrian restriction measure was deduced for the roundabout crosswalk from the FCA model and national guideline of setting traffic lights.展开更多
In order to reduce the traffic pressure of urban arterial road with the rational utilization of the branch road,the vehicle meeting behavior on the branch road without divided lane was described,and the cellular autom...In order to reduce the traffic pressure of urban arterial road with the rational utilization of the branch road,the vehicle meeting behavior on the branch road without divided lane was described,and the cellular automation (CA) model was put forward by introducing meeting behavior to reflect the relation between safe meeting speed and road width.The numerical simulation results depict several relation curves between road section capacity,speed and road width under different directional distributions of traffic flow,as well as the curves between the major and minor direction saturation flow,speed and road width.These relation characteristics indicate that except the one-way road section capacity and speed remaining unchanged,other road section capacities and speeds under different directional distributions increase with the increase of road width.On narrow road,the two-way traffic capacity and speed are less than those of one-way traffic;on wide road,the two-way traffic capacity doubles that of one-way traffic,but their speeds are almost the same.As the directional distribution moves to an even distribution of 50/50,the major direction saturation flows and speeds as well as the minor direction speeds tend to decease,while the minor direction saturation flow tends to increase.展开更多
A new sufficient conditions for the global exponential stability of the equilibrium point for delayed cellular neural networks (DCNNs) is presented. It is shown that the use of a more general type of Lyapunov-Krasov...A new sufficient conditions for the global exponential stability of the equilibrium point for delayed cellular neural networks (DCNNs) is presented. It is shown that the use of a more general type of Lyapunov-Krasovskii function enables the derivation of new results for an exponential stability of the equilibrium point for DCNNs. The results establish a relation between the delay time and the parameters of the network. The results are also compared with one of the most recent results derived in the literature.展开更多
A new multi-cell cellular configuration networks is provided for analysis of handover initiation probability, which is based on multi-beam base-station antenna splitting in the elevation-radiating plane. The sum of th...A new multi-cell cellular configuration networks is provided for analysis of handover initiation probability, which is based on multi-beam base-station antenna splitting in the elevation-radiating plane. The sum of the received signal power in the mobile station, including both desired and interference signal power, has been introduced into the handover initiation algorithm. Along with the idea, we present three models of handover initiation algorithm with the shadowing process of Gaussian distribution. The formulation of handover initiation probability of those algorithms is also analyzed. The validity of the presented models has been checked through the comparison with simulation results. The results present the performance characteristics of handover initiation vary with cluster number and base-station antenna elevation angle.展开更多
A modified cellular automaton(CA) program was developed to simulate the process of dynamic recrystallization(DRX) for 23Co13Ni11Cr3Mo ultrahigh strength steel.In this model,influences of deformation parameters on hard...A modified cellular automaton(CA) program was developed to simulate the process of dynamic recrystallization(DRX) for 23Co13Ni11Cr3Mo ultrahigh strength steel.In this model,influences of deformation parameters on hardening rate and solute drag effect were considered.Moreover,an inverse analysis method was proposed for parameters identification of dislocation model and solute drag effect based on the results of isothermal compression tests on Gleeble-1500.Then,simulated microstructures under different deformation conditions were compared with those of experiments.A good agreement is achieved.Furthermore,influences of deformation parameters on microstructure evolution for 23Co13Ni11Cr3Mo steel were investigated in details.High strain is an effective measure to refine grain and improve homogeneity.Meanwhile,the desired deformation parameters are temperature of 1000-1050 °C and strain rate of 0.008-0.01 s-1 for obtaining grains smaller than 22.5 μm.展开更多
Some sufficient conditions for the global exponential stability and lower bounds on the rate of exponential convergence of the cellular neural networks with delay (DCNNs) are obtained by means of a method based on del...Some sufficient conditions for the global exponential stability and lower bounds on the rate of exponential convergence of the cellular neural networks with delay (DCNNs) are obtained by means of a method based on delay differential inequality. The method, which does not make use of any Lyapunov functional, is simple and valid for the stability analysis of neural networks with delay. Some previously established results in this paper are shown to be special casses of the presented result.展开更多
Both time-delays and anti-windup(AW)problems are conventional problems in system design,which are scarcely discussed in cellular neural networks(CNNs).This paper discusses stabilization for a class of distributed time...Both time-delays and anti-windup(AW)problems are conventional problems in system design,which are scarcely discussed in cellular neural networks(CNNs).This paper discusses stabilization for a class of distributed time-delayed CNNs with input saturation.Based on the Lyapunov theory and the Schur complement principle,a bilinear matrix inequality(BMI)criterion is designed to stabilize the system with input saturation.By matrix congruent transformation,the BMI control criterion can be changed into linear matrix inequality(LMI)criterion,then it can be easily solved by the computer.It is a one-step AW strategy that the feedback compensator and the AW compensator can be determined simultaneously.The attraction domain and its optimization are also discussed.The structure of CNNs with both constant timedelays and distribute time-delays is more general.This method is simple and systematic,allowing dealing with a large class of such systems whose excitation satisfies the Lipschitz condition.The simulation results verify the effectiveness and feasibility of the proposed method.展开更多
It is known that mechanical forces play critical roles in physiology and diseases but the underlying mechanisms remain largely unknown[1].Most studies on the role of forces focus on cell surface molecules and cytoplas...It is known that mechanical forces play critical roles in physiology and diseases but the underlying mechanisms remain largely unknown[1].Most studies on the role of forces focus on cell surface molecules and cytoplasmic proteins.However,increasing evidence suggests that nuclear mechanotransduction impacts nuclear activities and functions.Recently we have revealed that transgene dihydrofolate reductase(DHFR)gene expression is directly upregulated via cell surface forceinduced stretching of chromatin [2].Here we show that endogenous genes are also upregulated directly by force via integrins.We present evidence on an underlying mechanism of how gene transcription is regulated by force.We have developed a technique of elastic round microgels to quantify 3D tractions in vitro and in vivo[3].We report a synthetic small molecule(which has been stiffened structurally)that inhibits malignant tumor repopulating cell growth in a low-stiffness(force)microenvironment and cancer metastasis in mouse models without detectable toxicity[4].These findings suggest that direct nuclear mechanotransduction impacts mechanobiology and mechanomedicine at cellular and molecular levels.展开更多
文摘Power control is an important technique in WCDMA mobile systems for both increasing system capacity and guaranteeing the required QoS (time delay and wireless link transmission quality) of multimedia services. The optimum power control for narrow band CDMA cellular systems is a problem of single threshold optimization. Because these systems have only one type of traffic and have the same QoS requirement. However, WCDMA mobile system should provide multimedia services and different types of traffic have different QoS requirements. Thus, the power control in WCDMA mobile systems isn't a problem of single threshold optimizing, but turns into the optimizing problem of multi-threshold. We analyze the power control problem in WCDMA cellular mobile systems and propose the optimum transmitter power control algorithm. Three criteria to optimize transmitter power levels of multi-thresholds based on grading the priority orders of multimedia services are proposed. Simulation results show that the proposed algorithms are more effective than conventional algorithms and can provide better performance for WCDMA cellular mobile systems.
文摘The performance of a material is directly affected by its microstructural development during the solidification phase. Discrete cellular automaton (CA) models are widelyused in materials science to simulate and predict microstructural growth. This review comprehensively explains the developments and applications of CA in solidification structure simulation, including the theoretical underpinnings, computational procedures, software development, and recent advances. Summarizes the potential and limitations of cellular automata in understanding microstructure evolution during solidification, explores the evolution of microstructures during solidification, and adds to our existing knowledge of cellular automaton theory. Finally, the research trend in simulating the evolution of the solidification microstructure using cellular automaton theory is explored.
文摘Objective The nucleolar protein PES1(Pescadillo homolog 1)plays critical roles in ribosome biogenesis and cell cycle regulation,yet its involvement in cellular senescence remains poorly understood.This study aimed to comprehensively investigate the functional consequences of PES1 suppression in cellular senescence and elucidate the molecular mechanisms underlying its regulatory role.Methods Initially,we assessed PES1 expression patterns in two distinct senescence models:replicative senescent mouse embryonic fibroblasts(MEFs)and doxorubicin-induced senescent human hepatocellular carcinoma HepG2 cells.Subsequently,PES1 expression was specifically downregulated using siRNA-mediated knockdown in these cell lines as well as additional relevant cell types.Cellular proliferation and senescence were assessed by EdU incorporation and SA-β-gal staining assays,respectively.The expression of senescence-associated proteins(p53,p21,and Rb)and SASP factors(IL-6,IL-1β,and IL-8)were analyzed by Western blot or qPCR.Furthermore,Northern blot and immunofluorescence were employed to evaluate pre-rRNA processing and nucleolar morphology.Results PES1 expression was significantly downregulated in senescent MEFs and HepG2 cells.PES1 knockdown resulted in decreased EdU-positive cells and increased SA-β-gal-positive cells,indicating proliferation inhibition and senescence induction.Mechanistically,PES1 suppression activated the p53-p21 pathway without affecting Rb expression,while upregulating IL-6,IL-1β,and IL-8 production.Notably,PES1 depletion impaired pre-rRNA maturation and induced nucleolar stress,as evidenced by aberrant nucleolar morphology.Conclusion Our findings demonstrate that PES1 deficiency triggers nucleolar stress and promotes p53-dependent(but Rb-independent)cellular senescence,highlighting its crucial role in maintaining nucleolar homeostasis and regulating senescence-associated pathways.
文摘One-dimensional blast response of continuous-density graded cellular rods was investigated theoretically and numerically. Analytical model based on the rigid-plastic hardening(R-PH) model was used to predict the blast response of density-graded cellular rods. Finite element(FE) analysis was performed using a new model based on the 3 D Voronoi technique. The FE results have a good agreement with the analytical predictions. The blast response and energy absorption of cellular rods with the same mass but different density distributions were examined under different blast loading. As a blast resistance structure, cellular materials with high energy absorption and low impulse transmit is attractive. However, high energy absorption and low impulse transmit cannot be achieved at the same time by changing the density distribution. The energy absorption capacity increases with the initial blast pressure and characteristic time of the exponentially decaying blast loading. By contract, when the blast loading exceeds the resistance capacity of cellular material, the transmitted stress will be enhanced which is detrimental to the structure being protected.
基金Projects(50422283,51208054) supported by the National Natural Science Foundation of China
文摘In order to analyze the impact of stretching-segment on the saturated flow rate of signalized intersection approach, an improved cellular automation model was proposed to estimate its saturated flow rate. The NaSch model was improved by adding different slow probabilities, turning deceleration rules and modified lane changing rules. The relationship between the saturated flow rate of stretching-segments and adjacent lanes was tested in numerical simulation. The length of stretching-segment, cycle length and green time were selected as impact factors of the cellular automation model. The simulation result indicates that the geometrics design of stretching-segment and the traffic signal timing scenario have major effects on the saturated flow rate of the intersection approach. The saturated flow rate will continually increase with increasing stretching-segment length until it reaches a threshold. After reaching the threshold, the stretching-segment can be treated as a separate lane. The green time is approximately linearly related to the threshold length of the stretching-segment. An optimum cycle length exists when the length of the stretching-segment is not long enough, and it is approximately linearly related to the length of stretching-segment.
基金Project(2012ZX04010-8)supported by National Key Technology R&D Program of China
文摘The dynamic recrystallization(DRX) process of hot compressed aluminium alloy 7050 was predicted using cellular automaton(CA) combined with topology deformation. The hot deformatation characteristics of aluminium alloy 7050 were investigated by hot uniaxial compression tests in order to obtain the material parameters used in the CA model. The influences of process parameters(strain, strain rate and temperature) on the fraction of DRX and the average recrystallization grain(R-grain) size were investigated and discussed. It is found that larger stain, higher temperature and lower strain rate(less than 0.1 s^(–1)) are beneficial to the increasing fraction of DRX. And the deformation temperature affects the mean R-grain size much more greatly than other parameters. It is also noted that there is a critical strain for the occurrence of DRX which is related to strain rate and temperature. In addition, it is shown that the CA model with topology deformation is able to simulate the microstructural evolution and the flow behavior of aluminium alloy 7050 material under various deformation conditions.
基金Project(2005CB724105) supported by the Major State Basic Research Program of ChinaProject(IRT0549) supported by Program for Changjiang Scholars and Innovative Research Team in University
文摘The prediction of microstructure evolution plays an important role in the design of forging process. In the present work, the cellular automaton (CA) program was developed to simulate the process of dynamic recrystallization (DRX) for aluminium alloy 7050. The material constants in CA models, including dislocation density, nucleation rate and grain growth, were determined by the isothermal compress tests on Gleeble 1500 machine. The model of dislocation density was obtained by linear regression method based on the experimental results. The influences of the deformation parameters on the percentage of DRX and the mean grain size for aluminium alloy 7050 were investigated in details by means of CA simulation. The simulation results show that, as temperature increases from 350 to 450 ℃ at a strain rate of 0.01 s?1, the percentage of DRX also increases greatly and the mean grain size decreases from 50 to 39.3 μm. The mean size of the recrystallied grains (R-grains) mainly depends on the Zener-Hollomon parameter. To obtain fine grain, the desired deformation temperature is determined from 400 to 450 ℃.
基金Projects(51305091,51475101)supported by the National Natural Science Foundation of ChinaProject(20132304120025)supported by Specialized Research Fund for the Doctoral Program of Higher Education,China
文摘In order to present the microstructures of dynamic recrystallization(DRX) in different deformation zones of hot extruded NiTi shape memory alloy(SMA) pipe coupling,a simulation approach combining finite element method(FEM) with cellular automaton(CA) was developed and the relationship between the macroscopic field variables and the microscopic internal variables was established.The results show that there exists a great distinction among the microstructures in different zones of pipe coupling because deformation histories of these regions are diverse.Large plastic deformation may result in fine recrystallized grains,whereas the recrystallized grains may grow very substantially if there is a rigid translation during the deformation,even if the final plastic strain is very large.As a consequence,the deformation history has a significant influence on the evolution path of the DRX as well as the final microstructures of the DRX,including the morphology,the mean grain size and the recrystallization fraction.
基金supported by the Research Fund for International Young Scientists of the National Natural Science Foundation of China(61550110248)the Research on Fundamental Theory of Shared Intelligent Street Lamp for New Scene Service(H04W200495)+1 种基金Sichuan Science and Technology Program(2019YFG0190)the Research on Sino-Tibetan Multi-source Information Acquisition,Fusion,Data Mining and its Application(H04W170186).
文摘Memristor with memory properties can be applied to connection points(synapses)between cells in a cellular neural network(CNN).This paper highlights memristor crossbar-based multilayer CNN(MCM-CNN)and its application to edge detection.An MCM-CNN is designed by adopting a memristor crossbar composed of a pair of memristors.MCM-CNN based on the memristor crossbar with changeable weight is suitable for edge detection of a binary image and a color image considering its characteristics of programmablization and compactation.Figure of merit(FOM)is introduced to evaluate the proposed structure and several traditional edge detection operators for edge detection results.Experiment results show that the FOM of MCM-CNN is three times more than that of the traditional edge detection operators.
基金Project(2020YFB1600400)supported by the National Key Research and Development Program of ChinaProject(2019JJ50837)supported by the Natural Science Foundation of Hunan Province,ChinaProject(71801227)supported by the National Natural Science Foundation of China。
文摘The roundabouts are widely used in China,some of which have central islands as scenic spots.The crosswalks connecting to the central islands,normally full of pedestrians,have negative impact on roundabout capability and pedestrian safety.Therefore,this study proposes a fuzzy cellular automata(FCA)model to explore the safety and efficiency impacts of pedestrian-vehicle conflicts at a two-lane roundabout.To reason the decision-making process of individual drivers before crosswalks,membership functions in the fuzzy inference system were calibrated with field data conducted in Changsha,China.Using specific indicators of efficiency and safety performance,it was shown that circulating vehicles can move smoothly in low traffic flow,but the roundabout system is prone to the traffic congestion if traffic flow reaches to a certain level.Also,the high yielding rate of drivers has a negative impact on the traffic efficiency but can improve pedestrian safety.Furthermore,a pedestrian restriction measure was deduced for the roundabout crosswalk from the FCA model and national guideline of setting traffic lights.
基金Project(71171200) supported by the National Natural Science Foundation of China
文摘In order to reduce the traffic pressure of urban arterial road with the rational utilization of the branch road,the vehicle meeting behavior on the branch road without divided lane was described,and the cellular automation (CA) model was put forward by introducing meeting behavior to reflect the relation between safe meeting speed and road width.The numerical simulation results depict several relation curves between road section capacity,speed and road width under different directional distributions of traffic flow,as well as the curves between the major and minor direction saturation flow,speed and road width.These relation characteristics indicate that except the one-way road section capacity and speed remaining unchanged,other road section capacities and speeds under different directional distributions increase with the increase of road width.On narrow road,the two-way traffic capacity and speed are less than those of one-way traffic;on wide road,the two-way traffic capacity doubles that of one-way traffic,but their speeds are almost the same.As the directional distribution moves to an even distribution of 50/50,the major direction saturation flows and speeds as well as the minor direction speeds tend to decease,while the minor direction saturation flow tends to increase.
基金This project was supported in part by the National Natural Science Foundation of China (60404022, 60604004)the Key Scientific Research project of Education Ministry of China (204014)the National Natural Science Foundation of China for Distinguished Young Scholars (60525303).
文摘A new sufficient conditions for the global exponential stability of the equilibrium point for delayed cellular neural networks (DCNNs) is presented. It is shown that the use of a more general type of Lyapunov-Krasovskii function enables the derivation of new results for an exponential stability of the equilibrium point for DCNNs. The results establish a relation between the delay time and the parameters of the network. The results are also compared with one of the most recent results derived in the literature.
文摘A new multi-cell cellular configuration networks is provided for analysis of handover initiation probability, which is based on multi-beam base-station antenna splitting in the elevation-radiating plane. The sum of the received signal power in the mobile station, including both desired and interference signal power, has been introduced into the handover initiation algorithm. Along with the idea, we present three models of handover initiation algorithm with the shadowing process of Gaussian distribution. The formulation of handover initiation probability of those algorithms is also analyzed. The validity of the presented models has been checked through the comparison with simulation results. The results present the performance characteristics of handover initiation vary with cluster number and base-station antenna elevation angle.
基金Project(2011CB706802)supported by the National Basic Research Program of ChinaProject(2012ZX04010-081)supported by National Science and Technology Major Program of China
文摘A modified cellular automaton(CA) program was developed to simulate the process of dynamic recrystallization(DRX) for 23Co13Ni11Cr3Mo ultrahigh strength steel.In this model,influences of deformation parameters on hardening rate and solute drag effect were considered.Moreover,an inverse analysis method was proposed for parameters identification of dislocation model and solute drag effect based on the results of isothermal compression tests on Gleeble-1500.Then,simulated microstructures under different deformation conditions were compared with those of experiments.A good agreement is achieved.Furthermore,influences of deformation parameters on microstructure evolution for 23Co13Ni11Cr3Mo steel were investigated in details.High strain is an effective measure to refine grain and improve homogeneity.Meanwhile,the desired deformation parameters are temperature of 1000-1050 °C and strain rate of 0.008-0.01 s-1 for obtaining grains smaller than 22.5 μm.
文摘Some sufficient conditions for the global exponential stability and lower bounds on the rate of exponential convergence of the cellular neural networks with delay (DCNNs) are obtained by means of a method based on delay differential inequality. The method, which does not make use of any Lyapunov functional, is simple and valid for the stability analysis of neural networks with delay. Some previously established results in this paper are shown to be special casses of the presented result.
基金supported by the National Natural Science Foundation of China(61374003 41631072)the Academic Foundation of Naval University of Engineering(20161475)
文摘Both time-delays and anti-windup(AW)problems are conventional problems in system design,which are scarcely discussed in cellular neural networks(CNNs).This paper discusses stabilization for a class of distributed time-delayed CNNs with input saturation.Based on the Lyapunov theory and the Schur complement principle,a bilinear matrix inequality(BMI)criterion is designed to stabilize the system with input saturation.By matrix congruent transformation,the BMI control criterion can be changed into linear matrix inequality(LMI)criterion,then it can be easily solved by the computer.It is a one-step AW strategy that the feedback compensator and the AW compensator can be determined simultaneously.The attraction domain and its optimization are also discussed.The structure of CNNs with both constant timedelays and distribute time-delays is more general.This method is simple and systematic,allowing dealing with a large class of such systems whose excitation satisfies the Lipschitz condition.The simulation results verify the effectiveness and feasibility of the proposed method.
基金supported by funds from National Institutes of Health,USA and Huazhong University of Science and Technology,Wuhan,Chinathe support from Hoeft Professorship at University of Illinois at Urbana-Champaign
文摘It is known that mechanical forces play critical roles in physiology and diseases but the underlying mechanisms remain largely unknown[1].Most studies on the role of forces focus on cell surface molecules and cytoplasmic proteins.However,increasing evidence suggests that nuclear mechanotransduction impacts nuclear activities and functions.Recently we have revealed that transgene dihydrofolate reductase(DHFR)gene expression is directly upregulated via cell surface forceinduced stretching of chromatin [2].Here we show that endogenous genes are also upregulated directly by force via integrins.We present evidence on an underlying mechanism of how gene transcription is regulated by force.We have developed a technique of elastic round microgels to quantify 3D tractions in vitro and in vivo[3].We report a synthetic small molecule(which has been stiffened structurally)that inhibits malignant tumor repopulating cell growth in a low-stiffness(force)microenvironment and cancer metastasis in mouse models without detectable toxicity[4].These findings suggest that direct nuclear mechanotransduction impacts mechanobiology and mechanomedicine at cellular and molecular levels.