Thermally activated delayed fluorescence(TADF)molecules have outstanding potential for applications in organic light-emitting diodes(OLEDs).Due to the lack of systematic studies on the correlation between molecular st...Thermally activated delayed fluorescence(TADF)molecules have outstanding potential for applications in organic light-emitting diodes(OLEDs).Due to the lack of systematic studies on the correlation between molecular structure and luminescence properties,TADF molecules are far from meeting the needs of practical applications in terms of variety and number.In this paper,three twisted TADF molecules are studied and their photophysical properties are theoretically predicted based on the thermal vibrational correlation function method combined with multiscale calculations.The results show that all the molecules exhibit fast reverse intersystem crossing(RISC)rates(kRISC),predicting their TADF luminescence properties.In addition,the binding of DHPAzSi as the donor unit with different acceptors can change the dihedral angle between the ground and excited states,and the planarity of the acceptors is positively correlated with the reorganization energy,a property that has a strong influence on the non-radiative process.Furthermore,a decrease in the energy of the molecular charge transfer state and an increase in the kRISC were observed in the films.This study not only provides a reliable explanation for the observed experimental results,but also offers valuable insights that can guide the design of future TADF molecules.展开更多
Hanyu Xu 1,Xuedan Song 1,*,Qing Zhang 1,Chang Yu 1,Jieshan Qiu 1,2,*1 Liaoning Key Lab for Energy Materials and Chemical Engineering,State Key Laboratory of Fine Chemicals,School of Chemical Engineering,Dalian Univers...Hanyu Xu 1,Xuedan Song 1,*,Qing Zhang 1,Chang Yu 1,Jieshan Qiu 1,2,*1 Liaoning Key Lab for Energy Materials and Chemical Engineering,State Key Laboratory of Fine Chemicals,School of Chemical Engineering,Dalian University of Technology,Dalian 116024,Liaoning Province,China.展开更多
目的观察基于相位对比(PC)MRI颅内血流动力学参数预测急性高原反应(AMS)的价值。方法前瞻性招募72名健康青年志愿者,于平原地区采集平静呼吸及轻、中及重度瓦尔萨尔瓦动作(VM)下的颈内动脉(ICA)及颈内静脉(IJV)PC MRI并记录ICA及IJV血...目的观察基于相位对比(PC)MRI颅内血流动力学参数预测急性高原反应(AMS)的价值。方法前瞻性招募72名健康青年志愿者,于平原地区采集平静呼吸及轻、中及重度瓦尔萨尔瓦动作(VM)下的颈内动脉(ICA)及颈内静脉(IJV)PC MRI并记录ICA及IJV血流动力学参数;根据急进海拔4411 m的高原地区10 h后路易斯湖评分(LLS)结果划分AMS组(n=9)与无AMS组(n=63);采用单因素及多因素logistic回归分析筛选各状态下AMS的独立预测因素,构建单一及联合VM状态预测模型;绘制受试者工作特征曲线,计算曲线下面积(AUC),评估各模型预测效能。结果轻度VM下ICA搏动指数(PI ICA)、中度VM下IJV面积(S IJV)及重度VM下IJV阻力指数(RI IJV)均为AMS独立预测因素(P均<0.05)。联合VM状态模型(AUC=0.869)预测AMS的效能高于单一VM状态模型(AUC=0.698~0.738)。结论基于轻度VM PI ICA、中度VM S IJV及重度VM RI IJV构建的模型可有效预测AMS。展开更多
文摘Thermally activated delayed fluorescence(TADF)molecules have outstanding potential for applications in organic light-emitting diodes(OLEDs).Due to the lack of systematic studies on the correlation between molecular structure and luminescence properties,TADF molecules are far from meeting the needs of practical applications in terms of variety and number.In this paper,three twisted TADF molecules are studied and their photophysical properties are theoretically predicted based on the thermal vibrational correlation function method combined with multiscale calculations.The results show that all the molecules exhibit fast reverse intersystem crossing(RISC)rates(kRISC),predicting their TADF luminescence properties.In addition,the binding of DHPAzSi as the donor unit with different acceptors can change the dihedral angle between the ground and excited states,and the planarity of the acceptors is positively correlated with the reorganization energy,a property that has a strong influence on the non-radiative process.Furthermore,a decrease in the energy of the molecular charge transfer state and an increase in the kRISC were observed in the films.This study not only provides a reliable explanation for the observed experimental results,but also offers valuable insights that can guide the design of future TADF molecules.
文摘Hanyu Xu 1,Xuedan Song 1,*,Qing Zhang 1,Chang Yu 1,Jieshan Qiu 1,2,*1 Liaoning Key Lab for Energy Materials and Chemical Engineering,State Key Laboratory of Fine Chemicals,School of Chemical Engineering,Dalian University of Technology,Dalian 116024,Liaoning Province,China.
文摘目的观察基于相位对比(PC)MRI颅内血流动力学参数预测急性高原反应(AMS)的价值。方法前瞻性招募72名健康青年志愿者,于平原地区采集平静呼吸及轻、中及重度瓦尔萨尔瓦动作(VM)下的颈内动脉(ICA)及颈内静脉(IJV)PC MRI并记录ICA及IJV血流动力学参数;根据急进海拔4411 m的高原地区10 h后路易斯湖评分(LLS)结果划分AMS组(n=9)与无AMS组(n=63);采用单因素及多因素logistic回归分析筛选各状态下AMS的独立预测因素,构建单一及联合VM状态预测模型;绘制受试者工作特征曲线,计算曲线下面积(AUC),评估各模型预测效能。结果轻度VM下ICA搏动指数(PI ICA)、中度VM下IJV面积(S IJV)及重度VM下IJV阻力指数(RI IJV)均为AMS独立预测因素(P均<0.05)。联合VM状态模型(AUC=0.869)预测AMS的效能高于单一VM状态模型(AUC=0.698~0.738)。结论基于轻度VM PI ICA、中度VM S IJV及重度VM RI IJV构建的模型可有效预测AMS。