By combining the results of laboratory model tests with relevant flow rules, the failure mode of shallow unsymmetrical loading tunnels and the corresponding velocity field were established. According to the principle ...By combining the results of laboratory model tests with relevant flow rules, the failure mode of shallow unsymmetrical loading tunnels and the corresponding velocity field were established. According to the principle of virtual power, the upper bound solution for surrounding rock pressure of shallow unsymmetrical loading tunnel was derived and verified by an example. The results indicate that the calculated results of the derived upper bound method for surrounding rock pressure of shallow unsymmetrical loading tunnels are relatively close to those of the existing "code method" and test results, which means that the proposed method is feasible. The current code method underestimates the unsymmetrical loading feature of surrounding rock pressure of shallow unsymmetrical loading tunnels, so it is unsafe; when the burial depth is less or greater than two times of the tunnel span and the unsymmetrical loading angle is less than 45°, the upper bound method or the average value of the results calculated by the upper bound method and code method respectively, is comparatively reasonable. When the burial depth is greater than two times of the tunnel span and the unsymmetrical loading angle is greater than 45°, the code method is more suitable.展开更多
The investigation of supporting pressure is of great significance to the design of underground structures.Based on the kinematical approach of limit analysis,an improved failure mechanism is proposed,and the supportin...The investigation of supporting pressure is of great significance to the design of underground structures.Based on the kinematical approach of limit analysis,an improved failure mechanism is proposed,and the supporting pressure is investigated for deep buried cavity.Three failure mechanisms are first introduced according to the existing failure mechanisms of geotechnical structures of limit analysis.A comparison with respect to the optimal failure mechanisms and the upper bound solutions provided among these three mechanisms are then conducted in an attempt to obtain the improved failure mechanism.The results provided by the improved failure mechanism are in good agreement with those by the existing method,the numerical solution and field monitoring,which demonstrates that the proposed failure mechanism is effective for the upper bound analysis of supporting pressure.展开更多
基金Project(2014M560652)supported by China Postdoctoral Science FoundationProjects(2011CB013802,2013CB036004)supported by the National Basic Research Program of China
文摘By combining the results of laboratory model tests with relevant flow rules, the failure mode of shallow unsymmetrical loading tunnels and the corresponding velocity field were established. According to the principle of virtual power, the upper bound solution for surrounding rock pressure of shallow unsymmetrical loading tunnel was derived and verified by an example. The results indicate that the calculated results of the derived upper bound method for surrounding rock pressure of shallow unsymmetrical loading tunnels are relatively close to those of the existing "code method" and test results, which means that the proposed method is feasible. The current code method underestimates the unsymmetrical loading feature of surrounding rock pressure of shallow unsymmetrical loading tunnels, so it is unsafe; when the burial depth is less or greater than two times of the tunnel span and the unsymmetrical loading angle is less than 45°, the upper bound method or the average value of the results calculated by the upper bound method and code method respectively, is comparatively reasonable. When the burial depth is greater than two times of the tunnel span and the unsymmetrical loading angle is greater than 45°, the code method is more suitable.
基金Project(51674115)supported by the National Natural Science Foundation of ChinaProject(51434006)supported by the Key Program of the National Natural Science Foundation of ChinaProject(2015JJ4024)supported by the Natural Science Foundation of Hunan Province,China
文摘The investigation of supporting pressure is of great significance to the design of underground structures.Based on the kinematical approach of limit analysis,an improved failure mechanism is proposed,and the supporting pressure is investigated for deep buried cavity.Three failure mechanisms are first introduced according to the existing failure mechanisms of geotechnical structures of limit analysis.A comparison with respect to the optimal failure mechanisms and the upper bound solutions provided among these three mechanisms are then conducted in an attempt to obtain the improved failure mechanism.The results provided by the improved failure mechanism are in good agreement with those by the existing method,the numerical solution and field monitoring,which demonstrates that the proposed failure mechanism is effective for the upper bound analysis of supporting pressure.