Ultra-dense networking is widely accepted as a promising enabling technology to realize high power and spectrum efficient communications in future 5G communication systems. Although joint resource allocation schemes p...Ultra-dense networking is widely accepted as a promising enabling technology to realize high power and spectrum efficient communications in future 5G communication systems. Although joint resource allocation schemes promise huge performance improvement at the cost of cooperation among base stations,the large numbers of user equipment and base station make jointly optimizing the available resource very challenging and even prohibitive. How to decompose the resource allocation problem is a critical issue. In this paper,we exploit factor graphs to design a distributed resource allocation algorithm for ultra dense networks,which consists of power allocation,subcarrier allocation and cell association. The proposed factor graph based distributed algorithm can decompose the joint optimization problem of resource allocation into a series of low complexity subproblems with much lower dimensionality,and the original optimization problem can be efficiently solved via solving these subproblems iteratively. In addition,based on the proposed algorithm the amounts of exchanging information overhead between the resulting subprob-lems are also reduced. The proposed distributed algorithm can be understood as solving largely dimensional optimization problem in a soft manner,which is much preferred in practical scenarios. Finally,the performance of the proposed low complexity distributed algorithm is evaluated by several numerical results.展开更多
针对LDPC(Low Density Parity Check)码分层(LBP:Layered Belief-Propagation)译码算法计算复杂度高、不易于硬件实现的问题,提出一种改进算法。该算法首先引入函数f(x)使LBP译码算法的计算复杂度大大降低;同时引入具体参数校正因子和...针对LDPC(Low Density Parity Check)码分层(LBP:Layered Belief-Propagation)译码算法计算复杂度高、不易于硬件实现的问题,提出一种改进算法。该算法首先引入函数f(x)使LBP译码算法的计算复杂度大大降低;同时引入具体参数校正因子和偏移因子,提升译码性能。仿真结果表明,改进后的算法相比LBP算法在计算复杂度降低的同时,也提升了译码性能,从而达到了易于硬件实现的目的。展开更多
This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa...This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum.展开更多
基金supported by China Mobile Research Institute under grant [2014] 451National Natural Science Foundation of China under Grant No. 61176027+2 种基金Beijing Natural Science Foundation(4152047)the 863 project No.2014AA01A701111 Project of China under Grant B14010
文摘Ultra-dense networking is widely accepted as a promising enabling technology to realize high power and spectrum efficient communications in future 5G communication systems. Although joint resource allocation schemes promise huge performance improvement at the cost of cooperation among base stations,the large numbers of user equipment and base station make jointly optimizing the available resource very challenging and even prohibitive. How to decompose the resource allocation problem is a critical issue. In this paper,we exploit factor graphs to design a distributed resource allocation algorithm for ultra dense networks,which consists of power allocation,subcarrier allocation and cell association. The proposed factor graph based distributed algorithm can decompose the joint optimization problem of resource allocation into a series of low complexity subproblems with much lower dimensionality,and the original optimization problem can be efficiently solved via solving these subproblems iteratively. In addition,based on the proposed algorithm the amounts of exchanging information overhead between the resulting subprob-lems are also reduced. The proposed distributed algorithm can be understood as solving largely dimensional optimization problem in a soft manner,which is much preferred in practical scenarios. Finally,the performance of the proposed low complexity distributed algorithm is evaluated by several numerical results.
文摘针对LDPC(Low Density Parity Check)码分层(LBP:Layered Belief-Propagation)译码算法计算复杂度高、不易于硬件实现的问题,提出一种改进算法。该算法首先引入函数f(x)使LBP译码算法的计算复杂度大大降低;同时引入具体参数校正因子和偏移因子,提升译码性能。仿真结果表明,改进后的算法相比LBP算法在计算复杂度降低的同时,也提升了译码性能,从而达到了易于硬件实现的目的。
基金This paper is supported by the Nature Science Foundation of Heilongjiang Province.
文摘This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum.