期刊文献+

Beyond-BP译码算法综述:原理与应用 被引量:5

Survey of Beyond-BP Decoding Algorithms: Theory and Applications
在线阅读 下载PDF
导出
摘要 低密度奇偶校验码因其具有逼近香农限的优异性能,现已在多种标准和系统中得到广泛的应用。但为了使其能够满足不同应用场景下通信系统对纠错性能、计算复杂性、译码时延、硬件资源损耗以及功耗等方面的要求,需要对用于LDPC码译码的置信传播算法进行进一步的研究与改进。该文从译码算法的改进动机、方法论、计算复杂度以及性能表现等角度入手,对近些年出现的一些Beyond-BP译码算法进行了综述。并在最后对用于迭代接收系统的译码算法改进工作进行了讨论,为未来算法的改进工作提供一点思路。 Low Density Parity Check (LDPC) codes are employed in several standards and systems, due to their Shannon limit approaching ability. However, in order to satisfy the communication systems' requirements at the aspects of error correction ability, computing complexity, decoding latency, hardware source consumption and power consumption under different application circumstances, the Belief Propagation (BP) algorithm used for decoding LDPC codes needs to be further investigated and improved. In this survey, authors summarize several different Beyond-BP algorithms from the aspects of motivation, methodology, complexity and performance. Moreover, this survey also discusses the optimization of decoding algorithms for iterative receive system, which can provide a reference for further investigation on this topic.
出处 《电子与信息学报》 EI CSCD 北大核心 2017年第6期1503-1514,共12页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61271241 61671395)~~
关键词 低密度奇偶校验码 置信传播算法 改进的置信传播算法 陷阱集 可靠度 迭代接收 Low Density Parity Check (LDPC) codes Belief Propagation (BP) algorithm Beyond-BP algorithm Trapping set Reliability Iterative receive
作者简介 吕毅博:男,1984年生,博士生,研究方向为信道译码算法. 胡伟:男,1988年生,博士生,研究方向为信息论和混沌调制系统. 王琳:男,1963年生,博士,特聘教授,博士生导师,研究方向为信息论与宽带无线通信理论.通信作者:王琳wanglin@xmu.edu.cn
  • 相关文献

参考文献7

二级参考文献103

  • 1Gallager R G. Low-density parity-check codes [J]. IRE Transactions on Information Theory, 1962, 8(1): 21-28.
  • 2Chung S Y. On the construction of some capacity- approaching coding schemes [D]. [Ph.D. dissertation], MIT, Cambridge, MA, 2000.
  • 3Brink S ten. Convergence behavior of iteratively decoded parallel concatenated codes [J]. IEEE Transactions on Communications, 2001, 49(10): 1727-1737.
  • 4Qian D, Jiang M, and Zhao C, et al.. A modification to weighted bit-flipping decoding algorithm for LDPC codes based on reliability adjustment [C]. IEEE International Conference, Beijing, 2008: 1161-1165.
  • 5Mobini N, Banihashemi A H, and Hemati S. A differential binary message-passing LDPC decoder [J]. IEEE Transactions on Communications, 2009, 57(9): 2518-2523.
  • 6Kim S, Jang M H, and No J S, et al.. Sequential messagepassing decoding of LDPC codes by partitioning check nodes [J]. IEEE Transactions on Communications, 2008, 56(7): 1025-1031.
  • 7Chang Y M, Andres I, and Casado V. Lower-complexity layered belief-propagation decoding of LDPC codes [C]. IEEE International Conference, Beijing, 2008: 1155-1160.
  • 8Chen J and Fossorier M P C. Near-optimum universal belief propagation based decoding of low-density parity check codes [J]. IEEE Transactions on Communications, 2002, 50(3): 406-414.
  • 9Divsalar D, Dolinar S, and Jones C, et al.. Capacity- approaching protograph codes [J]. IEEE Journal on Selected Areas in Communications, 2009, 27(6): 876-888.
  • 10Gounai S and Ohtsuki T. Decoding algorithms based on oscillation for Low-Density Parity Check codes [J]. IEICE Transactions on Fundamentals, 2005, E88-A(8): 2216-2226.

共引文献35

同被引文献21

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部