Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.Howev...Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.However,the widened hydraulic excitation frequency may satisfy the blade resonance due to the time variation in the velocity and angle of attack of the ocean current,even resulting in blade fatigue and destructively interfering with grid stability.A key parameter that determines the resonance amplitude of the blade is the hydrodynamic damping ratio(HDR).However,HDR is difficult to obtain due to the complex fluid-structure interaction(FSI).Therefore,a literature review was conducted on the hydrodynamic damping characteristics of blade-like structures.The experimental and simulation methods used to identify and obtain the HDR quantitatively were described,placing emphasis on the experimental processes and simulation setups.Moreover,the accuracy and efficiency of different simulation methods were compared,and the modal work approach was recommended.The effects of key typical parameters,including flow velocity,angle of attack,gap,rotational speed,and cavitation,on the HDR were then summarized,and the suggestions on operating conditions were presented from the perspective of increasing the HDR.Subsequently,considering multiple flow parameters,several theoretical derivations and semi-empirical prediction formulas for HDR were introduced,and the accuracy and application were discussed.Based on the shortcomings of the existing research,the direction of future research was finally determined.The current work offers a clear understanding of the HDR of blade-like structures,which could improve the evaluation accuracy of flow-induced vibration in the design stage.展开更多
An optical emission spectroscopy(OES)method with a non-invasive measurement capability,without inducing disturbance to the discharge,represents an effective method for material monitoring.However,when the OES method i...An optical emission spectroscopy(OES)method with a non-invasive measurement capability,without inducing disturbance to the discharge,represents an effective method for material monitoring.However,when the OES method is employed to monitor the trace erosion product within the ceramic channel of a Hall thruster,it becomes challenging to distinguish between signal and noise.In this study,we propose a model filtering method based on the signal characteristics of the Hall thruster plume spectrometer.This method integrates the slit imaging and spectral resolution features of the spectrometer.Employing this method,we extract the spectral signals of the erosion product and working gas from the Hall thruster under different operating conditions.The results indicate that our new method performs comparably to the traditional method without model filtering when extracting atom signals from strong xenon working gas.However,for trace amounts of the erosion product,our approach significantly enhances the signal-to-noise ratio(SNR),enabling the identification of extremely weak spectral signals even under low mass flow rate and low-voltage conditions.We obtain boron atom concentration of 3.91×10^(-3) kg/m^(3) at a mass flow rate of 4×10^(-7) kg/s and voltage of 200 V while monitoring a wider range of thruster operating conditions.The new method proposed in this study is suitable for monitoring other low-concentration elements,making it valuable for materials processing,environmental monitoring and space propulsion applications.展开更多
Controlled nuclear fusion represents a significant solution for future clean energy,with ion cyclotron range of frequency(ICRF)heating emerging as one of the most promising technologies for heating the fusion plasma.T...Controlled nuclear fusion represents a significant solution for future clean energy,with ion cyclotron range of frequency(ICRF)heating emerging as one of the most promising technologies for heating the fusion plasma.This study primarily presents a self-developed 2D ion cyclotron resonance antenna electromagnetic field solver(ICRAEMS)code implemented on the MATLAB platform,which solves the electric field wave equation by using the finite element method,establishing perfectly matched layer(PML)boundary conditions,and post-processing the electromagnetic field data.This code can be utilized to facilitate the design and optimization processes of antennas for ICRF heating technology.Furthermore,this study examines the electric field distribution and power spectrum associated with various antenna phases to investigate how different antenna configurations affect the electromagnetic field propagation and coupling characteristics.展开更多
In the process of large-scale,grid-connected wind power operations,it is important to establish an accurate probability distribution model for wind farm fluctuations.In this study,a wind power fluctuation modeling met...In the process of large-scale,grid-connected wind power operations,it is important to establish an accurate probability distribution model for wind farm fluctuations.In this study,a wind power fluctuation modeling method is proposed based on the method of moving average and adaptive nonparametric kernel density estimation(NPKDE)method.Firstly,the method of moving average is used to reduce the fluctuation of the sampling wind power component,and the probability characteristics of the modeling are then determined based on the NPKDE.Secondly,the model is improved adaptively,and is then solved by using constraint-order optimization.The simulation results show that this method has a better accuracy and applicability compared with the modeling method based on traditional parameter estimation,and solves the local adaptation problem of traditional NPKDE.展开更多
The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(R...The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.展开更多
Increasing incidents of indoor air quality(IAQ) related complaints lead us to the fact that IAQ has become a significant occupational health and environmental issue. However, how to effectively evaluate IAQ under diff...Increasing incidents of indoor air quality(IAQ) related complaints lead us to the fact that IAQ has become a significant occupational health and environmental issue. However, how to effectively evaluate IAQ under different scale of multiple indicators is still a challenge. The traditional single-indicator method is subjected to uncertainties in assessing IAQ due to different subjectivity on good or bad quality and scalar differences of data set. In this study, a multilevel integrated weighted average IAQ method including initial walking through assessment(IWA) and two-layers weighted average method are developed and applied to evaluate IAQ of the laboratory building at the University of Regina in Canada. Some important chemical parameters related to IAQ in terms of volatile organic compounds(VOCs), methanol(HCHO), carbon dioxide(CO2), and carbon monoxide(CO) are evaluated based on 5 months continuous monitoring data. The new integrated assessment result can not only indicates the risk of an individual parameter, but also able to quantify the overall IAQ risk on the sampling site. Finally, some recommendations based on the result are proposed to address sustainable IAQ practices in the sampling area.展开更多
The umbilical cable is a vital component of subsea production systems that provide power,chemical agents,control signals et al.,and its requirement for reliability is exceedingly high.However,as the umbilical cable is...The umbilical cable is a vital component of subsea production systems that provide power,chemical agents,control signals et al.,and its requirement for reliability is exceedingly high.However,as the umbilical cable is a composite structure comprising multiple functional units,the reliability analysis of such cables involves numerous parameters that can impact calculation efficiency.In this paper,the reliability analysis of a new kind of umbilical cable with carbon fiber rod under tension is analyzed.The global dynamic analytical model is first established to determine the maximum tension load,then the local analytical model of umbilical cable including each unit are constructed by finite element method(FEM).Based on the mechanical analytical model,the reliability of umbilical cable under tension load is studied using response surface method(RSM)and Monte Carlo method.During the calculation process,a new tangent plane sampling method to calculate the response surface function(RSF)is proposed in this paper,which could make sampling points faster come close to the RSF curve,and it is proved that the calculation efficiency increases about 33%comparing with traditional method.展开更多
In polar regions, floating ice exhibits distinct characteristics across a range of spatial scales. It is well recognized that the irregular geometry of these ice formations markedly influences their dynamic behavior. ...In polar regions, floating ice exhibits distinct characteristics across a range of spatial scales. It is well recognized that the irregular geometry of these ice formations markedly influences their dynamic behavior. This study introduces a polyhedral Discrete Element Method (DEM) tailored for polar ice, incorporating the Gilbert-Johnson-Keerthi (GJK) and Expanding Polytope Algorithm (EPA) for contact detection. This approach facilitates the simulation of the drift and collision processes of floating ice, effectively capturing its freezing and fragmentation. Subsequently, the stability and reli ability of this model are validated by uniaxial compression on level ice fields, focusing specifically on the influence of compression strength on deformation resistance. Additionally, clusters of ice floes nav igating through narrow channels are simulated. These studies have qualitatively assessed the effects of Floe Size Distribution (FSD), initial concentration, and circularity on their flow dynamics. The higher power-law exponent values in the FSD, increased circularity, and decreased concentration are each as sociated with accelerated flow in ice floe fields. The simulation results distinctly demonstrate the con siderable impact of sea ice geometry on the movement of clusters, offering valuable insights into the complexities of polar ice dynamics.展开更多
This paper presents an evaluation method for the entropy-weighting of wind power clusters that comprehensively evaluates the allocation problems of wind power clusters by considering the correlation between indicators...This paper presents an evaluation method for the entropy-weighting of wind power clusters that comprehensively evaluates the allocation problems of wind power clusters by considering the correlation between indicators and the dynamic performance of weight changes.A dynamic layered sorting allocation method is also proposed.The proposed evaluation method considers the power-limiting degree of the last cycle,the adjustment margin,and volatility.It uses the theory of weight variation to update the entropy weight coefficients of each indicator in real time,and then performs a fuzzy evaluation based on the membership function to obtain intuitive comprehensive evaluation results.A case study of a large-scale wind power base in Northwest China was conducted.The proposed evaluation method is compared with fixed-weight entropy and principal component analysis methods.The results show that the three scoring trends are the same,and that the proposed evaluation method is closer to the average level of the latter two,demonstrating higher accuracy.The proposed allocation method can reduce the number of adjustments made to wind farms,which is significant for the allocation and evaluation of wind power clusters.展开更多
Marine structures are frequently subjected to repeated impact loadings,resulting in failure of the structures,even causing serious accidents.The analytical expressions of dimensionless permanent deflection and impact ...Marine structures are frequently subjected to repeated impact loadings,resulting in failure of the structures,even causing serious accidents.The analytical expressions of dimensionless permanent deflection and impact force of a metal beam based on maximal normal yield surface are derived by membrane factor method(MFM),then the results are compared with repeated impact tests.It can be found that the solutions based on MFM are between the upper and lower bounds,and very close to the results of the repeated impact tests,indicating the theoretical model proposed can predict the plastic responses of the metal beam accurately.What’s more,the influences of impact location and boundary condition on the dynamic responses of the beam subjected to repeated impacts are determined.Results show that,as the distance of impact location from the middle span of the beam increases,the permanent deflection decreases,while the impact force increases.Meanwhile,the influences of impact location enhance as the impact number increases.When the permanent deflection is smaller than the thickness,the effect of boundary condition on the plastic responses is significant.However,when the deflection is larger than the thickness,the beam will be like a string and only axial force works,resulting in little influence of boundary condition on the plastic responses of the beam.展开更多
The optical potential ambiguity is a long-standing problem in the analysis of elastic scattering data.For a specific collid-ing system,ambiguous potential families can lead to different behaviors in the nearside and f...The optical potential ambiguity is a long-standing problem in the analysis of elastic scattering data.For a specific collid-ing system,ambiguous potential families can lead to different behaviors in the nearside and farside scattering components.By contrast,the envelope method can decompose the experimental data into two components with negative and positive deflection angles,respectively.Hence,a question arises as to whether the comparison between the calculated nearside(or farside)component and the derived positive-deflection-angle(or negative-deflection-angle)component can help analyze the potential ambiguity problem.In this study,we conducted a trial application of the envelope method to the potential ambiguity problem.The envelope method was improved by including uncertainties in the experimental data.The colliding systems of 16O+28Si at 215.2 MeV and 12C+12C at 1016 MeV were considered in the analyses.For each colliding system,the angular distribution experimental data were described nearly equally well by two potential sets,one of which is“surface transpar-ent”and the other is refractive.The calculated angular distributions were decomposed into nearside and farside scattering components.Using the improved envelope method,the experimental data were decomposed into the positive-deflection-angle and negative-deflection-angle components,which were then compared with the calculated nearside and farside components.The capability of the envelope method to analyze the potential ambiguities was also discussed.展开更多
In this article,we propose and research a first-order,linearized discontinuous Galerkin method for the approximation of the hydrodynamic and sediment transport model.The method is decoupled and fully discrete,and is s...In this article,we propose and research a first-order,linearized discontinuous Galerkin method for the approximation of the hydrodynamic and sediment transport model.The method is decoupled and fully discrete,and is shown to be unconditionally stable.Furthermore,error estimates are proved.Finally,the theoretical analysis is confirmed by numerical examples.展开更多
Considerable efforts are being made to transition current lithium-ion and sodium-ion batteries towards the use of solid-state electrolytes.Computational methods,specifically nudged elastic band(NEB)and molecular dynam...Considerable efforts are being made to transition current lithium-ion and sodium-ion batteries towards the use of solid-state electrolytes.Computational methods,specifically nudged elastic band(NEB)and molecular dynamics(MD)methods,provide powerful tools for the design of solid-state electrolytes.The MD method is usually the choice for studying the materials involving complex multiple diffusion paths or having disordered structures.However,it relies on simulations at temperatures much higher than working temperature.This paper studies the reliability of the MD method using the system of Na diffusion in MgO as a benchmark.We carefully study the convergence behavior of the MD method and demonstrate that total effective simulation time of 12 ns can converge the calculated diffusion barrier to about 0.01 eV.The calculated diffusion barrier is 0.31 eV from both methods.The diffusion coefficients at room temperature are 4.3×10^(-9) cm^(2)⋅s^(−1) and 2.2×10^(-9) cm^(2)⋅s^(−1),respectively,from the NEB and MD methods.Our results justify the reliability of the MD method,even though high temperature simulations have to be employed to overcome the limitation on simulation time.展开更多
In this paper,we construct a new sixth order iterative method for solving nonlinear equations.The local convergence and order of convergence of the new iterative method is demonstrated.In order to check the validity o...In this paper,we construct a new sixth order iterative method for solving nonlinear equations.The local convergence and order of convergence of the new iterative method is demonstrated.In order to check the validity of the new iterative method,we employ several chemical engineering applications and academic test problems.Numerical results show the good numerical performance of the new iterative method.Moreover,the dynamical study of the new method also supports the theoretical results.展开更多
We conduct optical-tweezers experiments to investigate the average potential energies of passive plates harmonically trapped in bacterial suspensions.Our results show that the mean potential energies along both the ma...We conduct optical-tweezers experiments to investigate the average potential energies of passive plates harmonically trapped in bacterial suspensions.Our results show that the mean potential energies along both the major and minor axes increase with bacterial concentration but decrease with trap stiffness.Notably,the average potential energy along the major axis consistently exceeds that along the minor axis.This discrepancy from equilibrium systems is primarily attributed to the distinct bacterial flow fields and direct bacterium–plate collisions near the major and minor axes,as evidenced by the higher orientational order around the plate along the major compared to the minor axis,despite identical bacterial densities in these regions.Our findings highlight the critical role of hydrodynamic interactions in determining the potential energy of passive objects immersed in an active bath.展开更多
Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise re...Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise results is inefficient in terms of computational resource.This is particularly evident when large-scale fluid field simulations are conducted with significant differences in computational domain size.In this work,a variable-domain-size adaptive mesh enlargement(vAME)method is developed based on the proposed adaptive mesh enlargement(AME)method for modeling multi-explosives explosion problems.The vAME method reduces the division of numerous empty areas or unnecessary computational domains by adaptively suspending enlargement operation in one or two directions,rather than in all directions as in AME method.A series of numerical tests via AME and vAME with varying nonintegral enlargement ratios and different mesh numbers are simulated to verify the efficiency and order of accuracy.An estimate of speedup ratio is analyzed for further efficiency comparison.Several large-scale near-ground explosion experiments with single/multiple explosives are performed to analyze the shock wave superposition formed by the incident wave,reflected wave,and Mach wave.Additionally,the vAME method is employed to validate the accuracy,as well as to investigate the performance of the fluid field and shock wave propagation,considering explosive quantities ranging from 1 to 5 while maintaining a constant total mass.The results show a satisfactory correlation between the overpressure versus time curves for experiments and numerical simulations.The vAME method yields a competitive efficiency,increasing the computational speed to 3.0 and approximately 120,000 times in comparison to AME and the fully fine mesh method,respectively.It indicates that the vAME method reduces the computational cost with minimal impact on the results for such large-scale high-energy release problems with significant differences in computational domain size.展开更多
To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based sim...To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based simulation(NNS)method with higher accuracy and better efficiency was proposed.The NNS method consisted of three main steps.First,the parameters of blast loads,including the peak pressures and impulses of cylindrical charges with different aspect ratios(L/D)at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations.Subsequently,incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network.Finally,reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model,including modifications of impulse and overpressure.The reliability of the proposed NNS method was verified by related experimental results.Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model.Moreover,huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method.The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg^(1/3).It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law,and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges.The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads,and it has significant application prospects in designing protective structures.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.52222904 and 52309117)China Postdoctoral Science Foundation(Nos.2022TQ0168 and 2023M731895).
文摘Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.However,the widened hydraulic excitation frequency may satisfy the blade resonance due to the time variation in the velocity and angle of attack of the ocean current,even resulting in blade fatigue and destructively interfering with grid stability.A key parameter that determines the resonance amplitude of the blade is the hydrodynamic damping ratio(HDR).However,HDR is difficult to obtain due to the complex fluid-structure interaction(FSI).Therefore,a literature review was conducted on the hydrodynamic damping characteristics of blade-like structures.The experimental and simulation methods used to identify and obtain the HDR quantitatively were described,placing emphasis on the experimental processes and simulation setups.Moreover,the accuracy and efficiency of different simulation methods were compared,and the modal work approach was recommended.The effects of key typical parameters,including flow velocity,angle of attack,gap,rotational speed,and cavitation,on the HDR were then summarized,and the suggestions on operating conditions were presented from the perspective of increasing the HDR.Subsequently,considering multiple flow parameters,several theoretical derivations and semi-empirical prediction formulas for HDR were introduced,and the accuracy and application were discussed.Based on the shortcomings of the existing research,the direction of future research was finally determined.The current work offers a clear understanding of the HDR of blade-like structures,which could improve the evaluation accuracy of flow-induced vibration in the design stage.
基金financially supported by National Natural Science Foundation of China(No.U22B2094)。
文摘An optical emission spectroscopy(OES)method with a non-invasive measurement capability,without inducing disturbance to the discharge,represents an effective method for material monitoring.However,when the OES method is employed to monitor the trace erosion product within the ceramic channel of a Hall thruster,it becomes challenging to distinguish between signal and noise.In this study,we propose a model filtering method based on the signal characteristics of the Hall thruster plume spectrometer.This method integrates the slit imaging and spectral resolution features of the spectrometer.Employing this method,we extract the spectral signals of the erosion product and working gas from the Hall thruster under different operating conditions.The results indicate that our new method performs comparably to the traditional method without model filtering when extracting atom signals from strong xenon working gas.However,for trace amounts of the erosion product,our approach significantly enhances the signal-to-noise ratio(SNR),enabling the identification of extremely weak spectral signals even under low mass flow rate and low-voltage conditions.We obtain boron atom concentration of 3.91×10^(-3) kg/m^(3) at a mass flow rate of 4×10^(-7) kg/s and voltage of 200 V while monitoring a wider range of thruster operating conditions.The new method proposed in this study is suitable for monitoring other low-concentration elements,making it valuable for materials processing,environmental monitoring and space propulsion applications.
基金Project supported by the National MCF Energy R&D Program(Grant No.2022YFE03190100)the National Natural Science Foundation of China(Grant Nos.12422513,12105035,and U21A20438)the Xiaomi Young Talents Program.
文摘Controlled nuclear fusion represents a significant solution for future clean energy,with ion cyclotron range of frequency(ICRF)heating emerging as one of the most promising technologies for heating the fusion plasma.This study primarily presents a self-developed 2D ion cyclotron resonance antenna electromagnetic field solver(ICRAEMS)code implemented on the MATLAB platform,which solves the electric field wave equation by using the finite element method,establishing perfectly matched layer(PML)boundary conditions,and post-processing the electromagnetic field data.This code can be utilized to facilitate the design and optimization processes of antennas for ICRF heating technology.Furthermore,this study examines the electric field distribution and power spectrum associated with various antenna phases to investigate how different antenna configurations affect the electromagnetic field propagation and coupling characteristics.
基金supported by Science and Technology project of the State Grid Corporation of China“Research on Active Development Planning Technology and Comprehensive Benefit Analysis Method for Regional Smart Grid Comprehensive Demonstration Zone”National Natural Science Foundation of China(51607104)
文摘In the process of large-scale,grid-connected wind power operations,it is important to establish an accurate probability distribution model for wind farm fluctuations.In this study,a wind power fluctuation modeling method is proposed based on the method of moving average and adaptive nonparametric kernel density estimation(NPKDE)method.Firstly,the method of moving average is used to reduce the fluctuation of the sampling wind power component,and the probability characteristics of the modeling are then determined based on the NPKDE.Secondly,the model is improved adaptively,and is then solved by using constraint-order optimization.The simulation results show that this method has a better accuracy and applicability compared with the modeling method based on traditional parameter estimation,and solves the local adaptation problem of traditional NPKDE.
基金supported by the National Key Research and Development Program of China(No.2023YFC2907600)the National Natural Science Foundation of China(Nos.42077267,42277174 and 52074164)+2 种基金the Natural Science Foundation of Shandong Province,China(No.ZR2020JQ23)the Opening Project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology(No.KFJJ21-02Z)the Fundamental Research Funds for the Central Universities,China(No.2022JCCXSB03).
文摘The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.
文摘Increasing incidents of indoor air quality(IAQ) related complaints lead us to the fact that IAQ has become a significant occupational health and environmental issue. However, how to effectively evaluate IAQ under different scale of multiple indicators is still a challenge. The traditional single-indicator method is subjected to uncertainties in assessing IAQ due to different subjectivity on good or bad quality and scalar differences of data set. In this study, a multilevel integrated weighted average IAQ method including initial walking through assessment(IWA) and two-layers weighted average method are developed and applied to evaluate IAQ of the laboratory building at the University of Regina in Canada. Some important chemical parameters related to IAQ in terms of volatile organic compounds(VOCs), methanol(HCHO), carbon dioxide(CO2), and carbon monoxide(CO) are evaluated based on 5 months continuous monitoring data. The new integrated assessment result can not only indicates the risk of an individual parameter, but also able to quantify the overall IAQ risk on the sampling site. Finally, some recommendations based on the result are proposed to address sustainable IAQ practices in the sampling area.
基金Financial support for this research was provided by the National Natural Science Foundation of China (Grant No.52222111)。
文摘The umbilical cable is a vital component of subsea production systems that provide power,chemical agents,control signals et al.,and its requirement for reliability is exceedingly high.However,as the umbilical cable is a composite structure comprising multiple functional units,the reliability analysis of such cables involves numerous parameters that can impact calculation efficiency.In this paper,the reliability analysis of a new kind of umbilical cable with carbon fiber rod under tension is analyzed.The global dynamic analytical model is first established to determine the maximum tension load,then the local analytical model of umbilical cable including each unit are constructed by finite element method(FEM).Based on the mechanical analytical model,the reliability of umbilical cable under tension load is studied using response surface method(RSM)and Monte Carlo method.During the calculation process,a new tangent plane sampling method to calculate the response surface function(RSF)is proposed in this paper,which could make sampling points faster come close to the RSF curve,and it is proved that the calculation efficiency increases about 33%comparing with traditional method.
文摘In polar regions, floating ice exhibits distinct characteristics across a range of spatial scales. It is well recognized that the irregular geometry of these ice formations markedly influences their dynamic behavior. This study introduces a polyhedral Discrete Element Method (DEM) tailored for polar ice, incorporating the Gilbert-Johnson-Keerthi (GJK) and Expanding Polytope Algorithm (EPA) for contact detection. This approach facilitates the simulation of the drift and collision processes of floating ice, effectively capturing its freezing and fragmentation. Subsequently, the stability and reli ability of this model are validated by uniaxial compression on level ice fields, focusing specifically on the influence of compression strength on deformation resistance. Additionally, clusters of ice floes nav igating through narrow channels are simulated. These studies have qualitatively assessed the effects of Floe Size Distribution (FSD), initial concentration, and circularity on their flow dynamics. The higher power-law exponent values in the FSD, increased circularity, and decreased concentration are each as sociated with accelerated flow in ice floe fields. The simulation results distinctly demonstrate the con siderable impact of sea ice geometry on the movement of clusters, offering valuable insights into the complexities of polar ice dynamics.
基金supported by the National Natural Science Foundation of China(Grant No.52076038,U22B20112,No.52106238)the Fundamental Research Funds for Central Universities(No.423162,B230201051).
文摘This paper presents an evaluation method for the entropy-weighting of wind power clusters that comprehensively evaluates the allocation problems of wind power clusters by considering the correlation between indicators and the dynamic performance of weight changes.A dynamic layered sorting allocation method is also proposed.The proposed evaluation method considers the power-limiting degree of the last cycle,the adjustment margin,and volatility.It uses the theory of weight variation to update the entropy weight coefficients of each indicator in real time,and then performs a fuzzy evaluation based on the membership function to obtain intuitive comprehensive evaluation results.A case study of a large-scale wind power base in Northwest China was conducted.The proposed evaluation method is compared with fixed-weight entropy and principal component analysis methods.The results show that the three scoring trends are the same,and that the proposed evaluation method is closer to the average level of the latter two,demonstrating higher accuracy.The proposed allocation method can reduce the number of adjustments made to wind farms,which is significant for the allocation and evaluation of wind power clusters.
文摘Marine structures are frequently subjected to repeated impact loadings,resulting in failure of the structures,even causing serious accidents.The analytical expressions of dimensionless permanent deflection and impact force of a metal beam based on maximal normal yield surface are derived by membrane factor method(MFM),then the results are compared with repeated impact tests.It can be found that the solutions based on MFM are between the upper and lower bounds,and very close to the results of the repeated impact tests,indicating the theoretical model proposed can predict the plastic responses of the metal beam accurately.What’s more,the influences of impact location and boundary condition on the dynamic responses of the beam subjected to repeated impacts are determined.Results show that,as the distance of impact location from the middle span of the beam increases,the permanent deflection decreases,while the impact force increases.Meanwhile,the influences of impact location enhance as the impact number increases.When the permanent deflection is smaller than the thickness,the effect of boundary condition on the plastic responses is significant.However,when the deflection is larger than the thickness,the beam will be like a string and only axial force works,resulting in little influence of boundary condition on the plastic responses of the beam.
基金This work was supported by the National Natural Science Foundation of China(Nos.12005047 and U1832105).
文摘The optical potential ambiguity is a long-standing problem in the analysis of elastic scattering data.For a specific collid-ing system,ambiguous potential families can lead to different behaviors in the nearside and farside scattering components.By contrast,the envelope method can decompose the experimental data into two components with negative and positive deflection angles,respectively.Hence,a question arises as to whether the comparison between the calculated nearside(or farside)component and the derived positive-deflection-angle(or negative-deflection-angle)component can help analyze the potential ambiguity problem.In this study,we conducted a trial application of the envelope method to the potential ambiguity problem.The envelope method was improved by including uncertainties in the experimental data.The colliding systems of 16O+28Si at 215.2 MeV and 12C+12C at 1016 MeV were considered in the analyses.For each colliding system,the angular distribution experimental data were described nearly equally well by two potential sets,one of which is“surface transpar-ent”and the other is refractive.The calculated angular distributions were decomposed into nearside and farside scattering components.Using the improved envelope method,the experimental data were decomposed into the positive-deflection-angle and negative-deflection-angle components,which were then compared with the calculated nearside and farside components.The capability of the envelope method to analyze the potential ambiguities was also discussed.
基金Supported by the National Natural Science Foundation of China(Grant No.41930643)the Natural Science Foundation of Henan Province(Grant No.232300420109).
文摘In this article,we propose and research a first-order,linearized discontinuous Galerkin method for the approximation of the hydrodynamic and sediment transport model.The method is decoupled and fully discrete,and is shown to be unconditionally stable.Furthermore,error estimates are proved.Finally,the theoretical analysis is confirmed by numerical examples.
基金supported by the National Natural Science Foundation of China (Grant Nos.12164019,11991060,12088101,and U1930402)the Natural Science Foundation of Jiangxi Province of China (Grant No.20212BAB201017).
文摘Considerable efforts are being made to transition current lithium-ion and sodium-ion batteries towards the use of solid-state electrolytes.Computational methods,specifically nudged elastic band(NEB)and molecular dynamics(MD)methods,provide powerful tools for the design of solid-state electrolytes.The MD method is usually the choice for studying the materials involving complex multiple diffusion paths or having disordered structures.However,it relies on simulations at temperatures much higher than working temperature.This paper studies the reliability of the MD method using the system of Na diffusion in MgO as a benchmark.We carefully study the convergence behavior of the MD method and demonstrate that total effective simulation time of 12 ns can converge the calculated diffusion barrier to about 0.01 eV.The calculated diffusion barrier is 0.31 eV from both methods.The diffusion coefficients at room temperature are 4.3×10^(-9) cm^(2)⋅s^(−1) and 2.2×10^(-9) cm^(2)⋅s^(−1),respectively,from the NEB and MD methods.Our results justify the reliability of the MD method,even though high temperature simulations have to be employed to overcome the limitation on simulation time.
基金supported by the National Natural Science Foundation of China (No.12271518)the Key Program of the National Natural Science Foundation of China (No.62333016)。
文摘In this paper,we construct a new sixth order iterative method for solving nonlinear equations.The local convergence and order of convergence of the new iterative method is demonstrated.In order to check the validity of the new iterative method,we employ several chemical engineering applications and academic test problems.Numerical results show the good numerical performance of the new iterative method.Moreover,the dynamical study of the new method also supports the theoretical results.
基金supports of the National Natural Science Foundation of China(Grant Nos.12304245,12374205,12475031,and 12364029)the Science Foundation of China University of Petroleum,Beijing(Grant Nos.2462023YJRC031 and 2462024BJRC010)+4 种基金the National Key Laboratory of Petroleum Resources and Engineering(Grant No.PRE/DX-2407)the Natural Science Foundation of Shandong Province(Grant No.ZR2024YQ017)the Young Elite Scientist Sponsorship Program by BAST(Grant No.BYESS2023300)the Beijing Institute of Technology Research Fund Program for Young ScholarsThis work was also supported by Beijing National Laboratory for Condensed Matter Physics(Grant Nos.2023BNLCMPKF014 and 2024BNLCMPKF009).
文摘We conduct optical-tweezers experiments to investigate the average potential energies of passive plates harmonically trapped in bacterial suspensions.Our results show that the mean potential energies along both the major and minor axes increase with bacterial concentration but decrease with trap stiffness.Notably,the average potential energy along the major axis consistently exceeds that along the minor axis.This discrepancy from equilibrium systems is primarily attributed to the distinct bacterial flow fields and direct bacterium–plate collisions near the major and minor axes,as evidenced by the higher orientational order around the plate along the major compared to the minor axis,despite identical bacterial densities in these regions.Our findings highlight the critical role of hydrodynamic interactions in determining the potential energy of passive objects immersed in an active bath.
基金supported by the National Natural Science Foundation of China(Grant Nos.12302435 and 12221002)。
文摘Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise results is inefficient in terms of computational resource.This is particularly evident when large-scale fluid field simulations are conducted with significant differences in computational domain size.In this work,a variable-domain-size adaptive mesh enlargement(vAME)method is developed based on the proposed adaptive mesh enlargement(AME)method for modeling multi-explosives explosion problems.The vAME method reduces the division of numerous empty areas or unnecessary computational domains by adaptively suspending enlargement operation in one or two directions,rather than in all directions as in AME method.A series of numerical tests via AME and vAME with varying nonintegral enlargement ratios and different mesh numbers are simulated to verify the efficiency and order of accuracy.An estimate of speedup ratio is analyzed for further efficiency comparison.Several large-scale near-ground explosion experiments with single/multiple explosives are performed to analyze the shock wave superposition formed by the incident wave,reflected wave,and Mach wave.Additionally,the vAME method is employed to validate the accuracy,as well as to investigate the performance of the fluid field and shock wave propagation,considering explosive quantities ranging from 1 to 5 while maintaining a constant total mass.The results show a satisfactory correlation between the overpressure versus time curves for experiments and numerical simulations.The vAME method yields a competitive efficiency,increasing the computational speed to 3.0 and approximately 120,000 times in comparison to AME and the fully fine mesh method,respectively.It indicates that the vAME method reduces the computational cost with minimal impact on the results for such large-scale high-energy release problems with significant differences in computational domain size.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52271317 and 52071149)the Fundamental Research Funds for the Central Universities(HUST:2019kfy XJJS007)。
文摘To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based simulation(NNS)method with higher accuracy and better efficiency was proposed.The NNS method consisted of three main steps.First,the parameters of blast loads,including the peak pressures and impulses of cylindrical charges with different aspect ratios(L/D)at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations.Subsequently,incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network.Finally,reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model,including modifications of impulse and overpressure.The reliability of the proposed NNS method was verified by related experimental results.Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model.Moreover,huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method.The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg^(1/3).It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law,and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges.The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads,and it has significant application prospects in designing protective structures.