考虑电池单体老化差异所致的电池组不一致性,针对串联电池组荷电状态(state of charge,SOC)、容量估计问题,提出一种基于自回归等效电路模型(autoregression equivalent circuit model,AR-ECM)的平均差异模型(mean-difference model,MDM...考虑电池单体老化差异所致的电池组不一致性,针对串联电池组荷电状态(state of charge,SOC)、容量估计问题,提出一种基于自回归等效电路模型(autoregression equivalent circuit model,AR-ECM)的平均差异模型(mean-difference model,MDM)。基于此模型,提出串联电池组SOC、容量多尺度联合估计算法。该算法由2个部分组成,一是基于AR-ECM的MDM及差异化模型参数辨识策略:条件辨识策略和定频分组辨识策略;二是基于多时间尺度H无穷滤波(multi-timescale H infinity filter,Mts-HIF)的电池组SOC、容量联合估计算法。通过将所提出MDM中的自回归平均模型(autoregression mean model,AR-MM)与传统MDM中的n阶RC平均模型(nRC mean model,nRC-MM)比较,结果表明所提出的AR-MM在复杂运行工况下具有更优的动态跟随性能。依据最小化信息量准则(akaike information criterion,AIC),AR-MM具有更优的复杂度与精度的权衡。通过与基于多时间尺度扩展卡尔曼滤波(multi-timescale extended Kalman filter,Mts-EKF)联合状态估计算法比较,结果表明所提出的Mts-HIF状态估计算法具有更优的鲁棒性、精度和收敛速度。展开更多
针对半球共形阵体制下进行低空风切变检测时会受到强地杂波信号的干扰,导致风切变信号难以检测的问题,提出了一种基于空时自回归的直接数据域算法(Space-Time Autoregressive Direct Data Domain,D3AR)的低空风切变风速估计方法。该方...针对半球共形阵体制下进行低空风切变检测时会受到强地杂波信号的干扰,导致风切变信号难以检测的问题,提出了一种基于空时自回归的直接数据域算法(Space-Time Autoregressive Direct Data Domain,D3AR)的低空风切变风速估计方法。该方法首先将待检测距离单元的数据从空域、时域以及空时域进行信号对消处理;然后将处理后的数据矩阵描述为空时自回归(Autoregression,AR)模型并估计模型参数;再通过构造与杂波子空间正交的空间来实现对杂波的抑制,最后通过提取待检测单元的最大多普勒频率来估计风场速度。根据仿真结果显示,该方法有效地实现了地杂波抑制,并且能够精确估计风速。展开更多
Three forecasting models are set up: the auto\|regressive moving average model, the grey forecasting model for the rate of qualified products P t, and the grey forecasting model for time intervals of the quality cata...Three forecasting models are set up: the auto\|regressive moving average model, the grey forecasting model for the rate of qualified products P t, and the grey forecasting model for time intervals of the quality catastrophes. Then a combined forewarning system for the quality of products is established, which contains three models, judgment rules and forewarning state illustration. Finally with an example of the practical production, this modeling system is proved fairly effective.展开更多
文摘考虑电池单体老化差异所致的电池组不一致性,针对串联电池组荷电状态(state of charge,SOC)、容量估计问题,提出一种基于自回归等效电路模型(autoregression equivalent circuit model,AR-ECM)的平均差异模型(mean-difference model,MDM)。基于此模型,提出串联电池组SOC、容量多尺度联合估计算法。该算法由2个部分组成,一是基于AR-ECM的MDM及差异化模型参数辨识策略:条件辨识策略和定频分组辨识策略;二是基于多时间尺度H无穷滤波(multi-timescale H infinity filter,Mts-HIF)的电池组SOC、容量联合估计算法。通过将所提出MDM中的自回归平均模型(autoregression mean model,AR-MM)与传统MDM中的n阶RC平均模型(nRC mean model,nRC-MM)比较,结果表明所提出的AR-MM在复杂运行工况下具有更优的动态跟随性能。依据最小化信息量准则(akaike information criterion,AIC),AR-MM具有更优的复杂度与精度的权衡。通过与基于多时间尺度扩展卡尔曼滤波(multi-timescale extended Kalman filter,Mts-EKF)联合状态估计算法比较,结果表明所提出的Mts-HIF状态估计算法具有更优的鲁棒性、精度和收敛速度。
文摘针对半球共形阵体制下进行低空风切变检测时会受到强地杂波信号的干扰,导致风切变信号难以检测的问题,提出了一种基于空时自回归的直接数据域算法(Space-Time Autoregressive Direct Data Domain,D3AR)的低空风切变风速估计方法。该方法首先将待检测距离单元的数据从空域、时域以及空时域进行信号对消处理;然后将处理后的数据矩阵描述为空时自回归(Autoregression,AR)模型并估计模型参数;再通过构造与杂波子空间正交的空间来实现对杂波的抑制,最后通过提取待检测单元的最大多普勒频率来估计风场速度。根据仿真结果显示,该方法有效地实现了地杂波抑制,并且能够精确估计风速。
文摘Three forecasting models are set up: the auto\|regressive moving average model, the grey forecasting model for the rate of qualified products P t, and the grey forecasting model for time intervals of the quality catastrophes. Then a combined forewarning system for the quality of products is established, which contains three models, judgment rules and forewarning state illustration. Finally with an example of the practical production, this modeling system is proved fairly effective.
基金This work was supported by the National Natural Science Foundation of China (51507015, 61773402, 61540037, 71271215, 61233008, 51425701, 70921001, 51577014), the Natural Science Foundation of Hunan Province (2015JJ3008), the Key Laboratory of Renewable Energy Electric-Technology of Hunan Province (2014ZNDL002), and Hunan Province Science and Technology Program(2015NK3035).