Starting with a decomposition conjecture,we carefully explain the basic decompositions for the Kadomtsev-Petviashvili(KP)equation as well as the necessary calculation procedures,and it is shown that the KP equation al...Starting with a decomposition conjecture,we carefully explain the basic decompositions for the Kadomtsev-Petviashvili(KP)equation as well as the necessary calculation procedures,and it is shown that the KP equation allows the Burgers-STO(BSTO)decomposition,two types of reducible coupled BSTO decompositions and the BSTO-KdV decomposition.Furthermore,we concentrate ourselves on pointing out the main idea and result of Bäcklund transformation of the KP equation based on a special superposition principle in the particular context of the BSTO decompositions.Using the framework of standard Lie point symmetry theory,these decompositions are studied and the problem of computing the corresponding symmetry constraints is treated.展开更多
In nonlinear physics, it is very difficult to study interactions among different types of nonlinear waves. In this paper,the nonlocal symmetry related to the truncated Painleve′ expansion of the(2+1)-dimensional B...In nonlinear physics, it is very difficult to study interactions among different types of nonlinear waves. In this paper,the nonlocal symmetry related to the truncated Painleve′ expansion of the(2+1)-dimensional Burgers equation is localized after introducing multiple new variables to extend the original equation into a new system. Then the corresponding group invariant solutions are found, from which interaction solutions among different types of nonlinear waves can be found.Furthermore, the Burgers equation is also studied by using the generalized tanh expansion method and a new Ba¨cklund transformation(BT) is obtained. From this BT, novel interactive solutions among different nonlinear excitations are found.展开更多
Variable coefficient nonlinear systems, the Korteweg de Vries (KdV), the modified KdV (mKdV) and the nonlinear Schrǒdinger (NLS) type equations, are derived from the nonlinear inviscid barotropic nondivergent v...Variable coefficient nonlinear systems, the Korteweg de Vries (KdV), the modified KdV (mKdV) and the nonlinear Schrǒdinger (NLS) type equations, are derived from the nonlinear inviscid barotropic nondivergent vorticity equation in a beta-plane by means of the multi-scale expansion method in two different ways, with and without the so-called y-average trick. The non-auto-Bǎcklund transformations are found to transform the derived variable coefficient equations to the corresponding standard KdV, mKdV and NLS equations. Thus, many possible exact solutions can be obtained by taking advantage of the known solutions of these standard equations. Further, many approximate solutions of the original model are ready to be yielded which might be applied to explain some real atmospheric phenomena, such as atmospheric blocking episodes.展开更多
The Painlevé property for a(2+1)-dimensional Korteweg–de Vries(KdV) extension, the combined KP3(Kadomtsev–Petviashvili) and KP4(cKP3-4), is proved by using Kruskal’s simplification. The truncated Painlevé...The Painlevé property for a(2+1)-dimensional Korteweg–de Vries(KdV) extension, the combined KP3(Kadomtsev–Petviashvili) and KP4(cKP3-4), is proved by using Kruskal’s simplification. The truncated Painlevé expansion is used to find the Schwartz form, the Bäcklund/Levi transformations, and the residual nonlocal symmetry. The residual symmetry is localized to find its finite Bäcklund transformation. The local point symmetries of the model constitute a centerless Kac–Moody–Virasoro algebra. The local point symmetries are used to find the related group-invariant reductions including a new Lax integrable model with a fourth-order spectral problem. The finite transformation theorem or the Lie point symmetry group is obtained by using a direct method.展开更多
基金Supported by the National Natural Science Foundation of China under Grant 61072145the Scientific Research Project of Beijing Educational Committee(SQKM201211232016)Beijing Excellent Talent Training Project(2013D005007000003)
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12235007, 11975131, and 12275144)the K. C. Wong Magna Fund in Ningbo Universitythe Natural Science Foundation of Zhejiang Province of China (Grant No. LQ20A010009)
文摘Starting with a decomposition conjecture,we carefully explain the basic decompositions for the Kadomtsev-Petviashvili(KP)equation as well as the necessary calculation procedures,and it is shown that the KP equation allows the Burgers-STO(BSTO)decomposition,two types of reducible coupled BSTO decompositions and the BSTO-KdV decomposition.Furthermore,we concentrate ourselves on pointing out the main idea and result of Bäcklund transformation of the KP equation based on a special superposition principle in the particular context of the BSTO decompositions.Using the framework of standard Lie point symmetry theory,these decompositions are studied and the problem of computing the corresponding symmetry constraints is treated.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11347183,11275129,11305106,11365017,and 11405110)the Natural Science Foundation of Zhejiang Province of China(Grant Nos.Y7080455 and LQ13A050001)
文摘In nonlinear physics, it is very difficult to study interactions among different types of nonlinear waves. In this paper,the nonlocal symmetry related to the truncated Painleve′ expansion of the(2+1)-dimensional Burgers equation is localized after introducing multiple new variables to extend the original equation into a new system. Then the corresponding group invariant solutions are found, from which interaction solutions among different types of nonlinear waves can be found.Furthermore, the Burgers equation is also studied by using the generalized tanh expansion method and a new Ba¨cklund transformation(BT) is obtained. From this BT, novel interactive solutions among different nonlinear excitations are found.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10735030, 10547124, 90503006 and 40305009)the National Basic Research Program of China (Grant Nos 2007CB814800 and 2005CB422301)+3 种基金Specialized Research Fund for the Doctoral Program of Higher Education (Grant No 20070248120)Program for Changjiang Scholars and Innovative Research Team in University (Grant No IRT0734)the Scientific Research Starting Foundation for Returned Overseas Chinese Scholars, Ministry of Education, Chinathe Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No NCET-05-0591)
文摘Variable coefficient nonlinear systems, the Korteweg de Vries (KdV), the modified KdV (mKdV) and the nonlinear Schrǒdinger (NLS) type equations, are derived from the nonlinear inviscid barotropic nondivergent vorticity equation in a beta-plane by means of the multi-scale expansion method in two different ways, with and without the so-called y-average trick. The non-auto-Bǎcklund transformations are found to transform the derived variable coefficient equations to the corresponding standard KdV, mKdV and NLS equations. Thus, many possible exact solutions can be obtained by taking advantage of the known solutions of these standard equations. Further, many approximate solutions of the original model are ready to be yielded which might be applied to explain some real atmospheric phenomena, such as atmospheric blocking episodes.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11975131 and 11435005)the K C Wong Magna Fund in Ningbo University。
文摘The Painlevé property for a(2+1)-dimensional Korteweg–de Vries(KdV) extension, the combined KP3(Kadomtsev–Petviashvili) and KP4(cKP3-4), is proved by using Kruskal’s simplification. The truncated Painlevé expansion is used to find the Schwartz form, the Bäcklund/Levi transformations, and the residual nonlocal symmetry. The residual symmetry is localized to find its finite Bäcklund transformation. The local point symmetries of the model constitute a centerless Kac–Moody–Virasoro algebra. The local point symmetries are used to find the related group-invariant reductions including a new Lax integrable model with a fourth-order spectral problem. The finite transformation theorem or the Lie point symmetry group is obtained by using a direct method.