期刊文献+

一类方程簇的Painlevé分析

Painlevé analysis of a kind of equation hierarchy
在线阅读 下载PDF
导出
摘要 对于与二阶多项式等谱问题相联系的方程簇的Painlevé分析,文章利用Weiss、Tabor及Carnevale(简称WTC)等人的方法对方程簇进行Painlevé分析。对m=2、n≥2时的方程簇进行Painlevé分析,给出了递推关系式,从中可得它的所有分支和共振点,给出了可积方程具有Painlevé性质的一个例证。 The Painlevé analysis of partial differential equations is made with the methods developed by Weiss,Tabor and Carnevale(WTC) so as to provide a unified approach to the integrable equation hierarchy. As m=2,n≥2,the Painlevé analysis of the equation hierarchy is carried out, and the resonances for all solution branches are obtained. An example of the integrable equation with Painlevé property is given.
作者 杨志林
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 2003年第5期1083-1086,共4页 Journal of Hefei University of Technology:Natural Science
关键词 PAINLEVE分析 二阶多项式 等谱问题 偏微分方程 分支 共振点 BACKLUND变换 Painlevé analysis Bcklund transformation resonance
  • 相关文献

参考文献8

  • 1Weiss J Tabor M Carnevale G.The Painlevé property for partial differential equations[J].J Math Phys,1983,24(3):522-522.
  • 2杨志林.与二阶多项式等谱问题相联系方程的Painlevé分析[J].合肥工业大学学报(自然科学版),2003,26(2):272-276. 被引量:1
  • 3Newell A C Tabor M Zeng Y B.A unified approach to Painlevé expansions[J].Physica,1987,29:1-68.
  • 4Zeng Y B, Li Y S. Integerable Hamiltonian system relatad to polynomial eigenvalue problem[J]. J Math Phys, 1990,34(3):651-655.
  • 5Newell A C, Tabor M, Zeng Y B. A unified approach to Painlevé expansions[J]. Physica,1987,29D:1-68.
  • 6Weiss J, Tabor M, Carnevale G. The Painlevé property for partial differential equations[J]. J Math Phys,1983,24(3):522.
  • 7Steeb W H, Louw J A, Strampp W. Lax formulation, Painlevé property and recursion operator for a space-dependent Burgers'equation[J]. Prog Theor Phys, 1986,75:455.
  • 8Weiss J. The Painlevé property for partial differential equations B a^.. cklund transformation , Lax pairs, and the Schwarzian derivative[J].J Math Phys,1983,24(6):1405.

二级参考文献1

  • 1M. J. Ablowitz,A. Ramani,H. Segur. Nonlinear evolution equations and ordinary differential equations of painlevè type[J] 1978,Lettere al Nuovo Cimento(9):333~338

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部