In order to investigate the failure mechanism of rock joint,a series of laboratory tests including cyclic direct shear tests under constant normal load(CNL)conditions were conducted.Morphology parameters of the rock j...In order to investigate the failure mechanism of rock joint,a series of laboratory tests including cyclic direct shear tests under constant normal load(CNL)conditions were conducted.Morphology parameters of the rock joint surface were precisely calculated by means of a three-dimensional laser scanning machine.All test results were analyzed to investigate the shear behavior and normal displacement behavior of rock joints under CNL conditions.Degradation of rock joint surface during cyclic shear tests was also analyzed.The comparison results of the height parameters and the hybrid parameters of the joint surface during cyclic tests show that the degradation of the surface mostly happens in the first shear and the constant normal loads imposed on the joints have significant promotion effects on the morphology degradation.During cyclic shear tests,joints surfaces evolve from rough state to smooth state but keep an overall undulation.Dilatancy of rock joints degrades with the degradation of joint surface and the increase of normal loads.The closure deformation of joint is larger than that of the intact rock,and the normal stiffness increases with the increase of shearing times.展开更多
By means of breaking tests on PtIr contact materials via a JF04C contact material testing machine, it was attempted to elucidate the characteristics of the various surface morphology and material transfer after the ar...By means of breaking tests on PtIr contact materials via a JF04C contact material testing machine, it was attempted to elucidate the characteristics of the various surface morphology and material transfer after the arc erosion process caused by break arc. The material transfer characteristics appeared in the experiments were concluded and analyzed. Meanwhile, the morphology of the anode and cathode surface were observed and analyzed by SEM.展开更多
In order to quantify the characteristics of the surface of jointed rock mass,new equipment,the three-dimensional laser surface topography instrument,was used to accurately measure surface morphology of joints.Scan pic...In order to quantify the characteristics of the surface of jointed rock mass,new equipment,the three-dimensional laser surface topography instrument,was used to accurately measure surface morphology of joints.Scan pictures and parameters were obtained to describe the rock joint surface characteristics,for example,the height frequency of surface,and mean square roughness.Using the method of fractal dimension,the values of joint roughness coefficient(JRC) were calculated based on the above parameters.It could access to the joint surface rock sample morphology of the main parameters of characteristic.The maximum peak height is 2.692 mm in the test joint plane.The maximum profile height is 4.408 mm.JRC value is 6.38 by fractal dimension computing.It belongs to the smooth joint surface.The results show that it is a kind of the effective method to quantitatively evaluate the surface topography by the three-dimensional laser surface topography instrument and the fractal dimension method.According to the results,during the process of underground large-scale mining,safe measures to prevent slip failure of the joint plane by controlling surface tension and shear mechanical response were proposed.展开更多
Brazilian disc tests were undertaken on a number of red sandstone samples with different water absorption ratios.The tensile strength of the red sandstone decreases as the water absorption ratio increases.The fracture...Brazilian disc tests were undertaken on a number of red sandstone samples with different water absorption ratios.The tensile strength of the red sandstone decreases as the water absorption ratio increases.The fracture surfaces of failed red sandstone discs were scanned by Talysurf CLI 2000.With the aid of Talymap Gold software,based on ISO25178,a set of statistical parameters was obtained for the fracture surfaces.The maximum peak height(S_p),maximum pit height(S_v) and maximum height(S_z) of the fracture surfaces exhibited the same decreasing trend with increasing water absorption.Sa and Sku values for the fracture surfaces showed a downward trend as the water absorption ratio increased.The fractal dimensions of fracture surfaces were calculated and found to decrease as the water absorption ratio increased.Through analysis of PSD curves,the smallest dominant wavelength was observed to reflect the roughness of the fracture surfaces.Additionally,the results suggest that the roughness of fracture surfaces becomes small as the water absorption ratio increases.展开更多
Secondary electron emission(SEE)has emerged as a critical issue in next-generation accelerators.Mitigating SEE on metal surfaces is crucial for enhancing the stability and emittance of particle accelerators while exte...Secondary electron emission(SEE)has emerged as a critical issue in next-generation accelerators.Mitigating SEE on metal surfaces is crucial for enhancing the stability and emittance of particle accelerators while extending their lifespan.This paper explores the application of laser-assisted water jet technology in constructing high-quality micro-trap structures on 316L stainless steel,a key material in accelerator manufacturing.The study systematically analyzes the impact of various parameters such as laser repetition frequency,pulse duration,average power,water jet pressure,repeat times,nozzle offset,focal position,offset distance between grooves,and processing speed on the surface morphology of stainless steel.The findings reveal that micro-groove depth increases with higher laser power but decreases with increasing water jet pressure and processing speed.Interestingly,repeat times have minimal effect on depth.On the other hand,micro-groove width increases with higher laser power and repeat times but decreases with processing speed.By optimizing these parameters,the researchers achieved high-quality pound sign-shaped trap structure with consistent dimensions.We tested the secondary electron emission coefficient of the"well"structure.The coefficient is reduced by 0.5 at most compared to before processing,effectively suppressing secondary electron emission.These results offer indispensable insights for the fabrication of micro-trap structures on material surfaces.Laser-assisted water jet technology demonstrates considerable potential in mitigating SEE on metal surfaces.展开更多
The effect of surface finish and annealing treatment on the oxidation behavior of Ti-48Al-8Cr-2Ag (molar fraction, %) alloy was investigated at 900 and 1 000 ℃, respectively in air. Thermal gravimetric analysis (TGA)...The effect of surface finish and annealing treatment on the oxidation behavior of Ti-48Al-8Cr-2Ag (molar fraction, %) alloy was investigated at 900 and 1 000 ℃, respectively in air. Thermal gravimetric analysis (TGA) was conducted for the characterization of oxidation kinetics. The microstructures of oxide scales were studied by scanning electron microscopy (SEM) and transmission election microscopy (TEM) techniques. Unfavorable effect of the annealing treatment on the oxidation behavior of the coating was also investigated. The results indicate that the oxidation behavior of the alloy is influenced by surface finish and annealing treatment. The oxidation rate of ground sample is lower than that of the polished alloy at 1 000 ℃ in air. The former forms a scale of merely Al2O3, and the latter forms a scale of the mixture of Al2O3 and TiO2. Annealing can improve the formation of TiO2.展开更多
This paper studied the influence of aging treatment on the corrosion behavior and mechanism of Mg-Y alloys with different Y content through corrosion mass loss test, electrochemical test and corrosion morphologies obs...This paper studied the influence of aging treatment on the corrosion behavior and mechanism of Mg-Y alloys with different Y content through corrosion mass loss test, electrochemical test and corrosion morphologies observation. Results show that the peak-aging times of Mg-(0.25, 2.5, 5, 8 and 15) Y alloys at 250 ℃ were 4, 6, 10, 12 and 16 h. The aging treatment reduced the corrosion resistance of Mg-Y alloys, and the corrosion resistance of Mg-Y alloys became worse with increasing of the aging time. The change magnitude of the open circuit potentials for Mg-(0.25, 2.5)Y alloys was greater than that of Mg-(5, 8 and 15)-Y alloys. The polarization curves of Mg (0.25, 2.5, 5, 8 and 15) Y alloys had the similar shape after aging treatment, and the slopes of the anodic branch were greater than those of the cathodic branches. After aging treatment, the corrosion modes of Mg-0.25Y and Mg-(2.5, 5, 8 and 15) Y alloys were uniform corrosion and pitting corrosion with small local deep corrosion.展开更多
Based on the interface shear tests,the macro-and meso-mechanical behaviors of interaction between coral sand and different structure surfaces are studied,in which CCD camera is used to capture digital images to analyz...Based on the interface shear tests,the macro-and meso-mechanical behaviors of interaction between coral sand and different structure surfaces are studied,in which CCD camera is used to capture digital images to analyze the evolution of the interaction band and a particle analysis apparatus is applied to studying the distribution characteristics of particle morphology.This study proposes four-stage evolution process based on the shear stress−strain curve.During the shear process,coral sand particles slide and rotate within the interaction band,causing the changes in shear stress and vertical displacement.In addition,the effects of structure surface roughness on shear strength,volume change and particle breakage are illustrated that the greater the roughness of slabs is,the larger the shear stress is,the more obvious the contraction effect is and the more the particles break.Furthermore,the change in particle’s 3D morphology during the breakage will change not only their size but also other morphological characteristics with convergence and self-organization.展开更多
The effect of surface roughness of aluminum oxide (95%) substrate on the properties of Ni-Cr alloy thin film is studied.The thin films are prepared on the substrates with different roughness by using magnetron sputter...The effect of surface roughness of aluminum oxide (95%) substrate on the properties of Ni-Cr alloy thin film is studied.The thin films are prepared on the substrates with different roughness by using magnetron sputtering.The micro-structure,adhesive and electrical properties of the thin films were investigated by using scanning electron microscopy,scratch method and four-probe method.The burst voltage and current of the thin film transducers with different substrates were measured according to D-optimization method.The results show that the particle size,structural defect,resistivity and adhesion strength of the thin film increase with the increase of the substrate roughness.The difference among the burst time of the samples with difference substrate roughness gradually decreases with the increase of stimulation amount.The burst time is approximate to 20 μs in the charging voltage of 37 V.展开更多
基金Project(51274249)supported by the National Natural Science Foundation of ChinaProject(2015zzts076)supported by the Explore Research Fund for Graduate Students of ChinaProject(201406)supported by the Hunan Key Laboratory of Coal Resources and Safe Mining Open-end Funds,China
文摘In order to investigate the failure mechanism of rock joint,a series of laboratory tests including cyclic direct shear tests under constant normal load(CNL)conditions were conducted.Morphology parameters of the rock joint surface were precisely calculated by means of a three-dimensional laser scanning machine.All test results were analyzed to investigate the shear behavior and normal displacement behavior of rock joints under CNL conditions.Degradation of rock joint surface during cyclic shear tests was also analyzed.The comparison results of the height parameters and the hybrid parameters of the joint surface during cyclic tests show that the degradation of the surface mostly happens in the first shear and the constant normal loads imposed on the joints have significant promotion effects on the morphology degradation.During cyclic shear tests,joints surfaces evolve from rough state to smooth state but keep an overall undulation.Dilatancy of rock joints degrades with the degradation of joint surface and the increase of normal loads.The closure deformation of joint is larger than that of the intact rock,and the normal stiffness increases with the increase of shearing times.
基金The National Nature Science Foundation of China(No.u0837601)
文摘By means of breaking tests on PtIr contact materials via a JF04C contact material testing machine, it was attempted to elucidate the characteristics of the various surface morphology and material transfer after the arc erosion process caused by break arc. The material transfer characteristics appeared in the experiments were concluded and analyzed. Meanwhile, the morphology of the anode and cathode surface were observed and analyzed by SEM.
基金Project(2011QNZT087) supported by the Freedom Explore Program of Central South University of ChinaProject(51074178) supported by the National Natural Science Foundation of China+1 种基金Project(09JJ4025) supported by Hunan Provincial Natural Science Foundation of ChinaProject(2010QZZD001) supported by the Fundamental Research Funds for the Central Universities of China
文摘In order to quantify the characteristics of the surface of jointed rock mass,new equipment,the three-dimensional laser surface topography instrument,was used to accurately measure surface morphology of joints.Scan pictures and parameters were obtained to describe the rock joint surface characteristics,for example,the height frequency of surface,and mean square roughness.Using the method of fractal dimension,the values of joint roughness coefficient(JRC) were calculated based on the above parameters.It could access to the joint surface rock sample morphology of the main parameters of characteristic.The maximum peak height is 2.692 mm in the test joint plane.The maximum profile height is 4.408 mm.JRC value is 6.38 by fractal dimension computing.It belongs to the smooth joint surface.The results show that it is a kind of the effective method to quantitatively evaluate the surface topography by the three-dimensional laser surface topography instrument and the fractal dimension method.According to the results,during the process of underground large-scale mining,safe measures to prevent slip failure of the joint plane by controlling surface tension and shear mechanical response were proposed.
基金Project(E21527)supported by Open Research Fund Program of Hunan Provincial Key Laboratory of Shale Gas Resource Utilization,Hunan University of Science and Technology,ChinaProjects(51174088,51174228)supported by the National Natural Science Foundation of China+1 种基金Project(2013CB035401)supported by the National Basic Research Program of ChinaProject(2015zzts077)supported by the Fundamental Research Funds for the Central Universities,China
文摘Brazilian disc tests were undertaken on a number of red sandstone samples with different water absorption ratios.The tensile strength of the red sandstone decreases as the water absorption ratio increases.The fracture surfaces of failed red sandstone discs were scanned by Talysurf CLI 2000.With the aid of Talymap Gold software,based on ISO25178,a set of statistical parameters was obtained for the fracture surfaces.The maximum peak height(S_p),maximum pit height(S_v) and maximum height(S_z) of the fracture surfaces exhibited the same decreasing trend with increasing water absorption.Sa and Sku values for the fracture surfaces showed a downward trend as the water absorption ratio increased.The fractal dimensions of fracture surfaces were calculated and found to decrease as the water absorption ratio increased.Through analysis of PSD curves,the smallest dominant wavelength was observed to reflect the roughness of the fracture surfaces.Additionally,the results suggest that the roughness of fracture surfaces becomes small as the water absorption ratio increases.
文摘Secondary electron emission(SEE)has emerged as a critical issue in next-generation accelerators.Mitigating SEE on metal surfaces is crucial for enhancing the stability and emittance of particle accelerators while extending their lifespan.This paper explores the application of laser-assisted water jet technology in constructing high-quality micro-trap structures on 316L stainless steel,a key material in accelerator manufacturing.The study systematically analyzes the impact of various parameters such as laser repetition frequency,pulse duration,average power,water jet pressure,repeat times,nozzle offset,focal position,offset distance between grooves,and processing speed on the surface morphology of stainless steel.The findings reveal that micro-groove depth increases with higher laser power but decreases with increasing water jet pressure and processing speed.Interestingly,repeat times have minimal effect on depth.On the other hand,micro-groove width increases with higher laser power and repeat times but decreases with processing speed.By optimizing these parameters,the researchers achieved high-quality pound sign-shaped trap structure with consistent dimensions.We tested the secondary electron emission coefficient of the"well"structure.The coefficient is reduced by 0.5 at most compared to before processing,effectively suppressing secondary electron emission.These results offer indispensable insights for the fabrication of micro-trap structures on material surfaces.Laser-assisted water jet technology demonstrates considerable potential in mitigating SEE on metal surfaces.
基金Project(2007430028) supported by the Science and Technique Foundation of Henan Educational Committee, China
文摘The effect of surface finish and annealing treatment on the oxidation behavior of Ti-48Al-8Cr-2Ag (molar fraction, %) alloy was investigated at 900 and 1 000 ℃, respectively in air. Thermal gravimetric analysis (TGA) was conducted for the characterization of oxidation kinetics. The microstructures of oxide scales were studied by scanning electron microscopy (SEM) and transmission election microscopy (TEM) techniques. Unfavorable effect of the annealing treatment on the oxidation behavior of the coating was also investigated. The results indicate that the oxidation behavior of the alloy is influenced by surface finish and annealing treatment. The oxidation rate of ground sample is lower than that of the polished alloy at 1 000 ℃ in air. The former forms a scale of merely Al2O3, and the latter forms a scale of the mixture of Al2O3 and TiO2. Annealing can improve the formation of TiO2.
基金Projects(2011BAE22B01,2011BAE22B06)supported by the National Key Technology R&D Program,China
文摘This paper studied the influence of aging treatment on the corrosion behavior and mechanism of Mg-Y alloys with different Y content through corrosion mass loss test, electrochemical test and corrosion morphologies observation. Results show that the peak-aging times of Mg-(0.25, 2.5, 5, 8 and 15) Y alloys at 250 ℃ were 4, 6, 10, 12 and 16 h. The aging treatment reduced the corrosion resistance of Mg-Y alloys, and the corrosion resistance of Mg-Y alloys became worse with increasing of the aging time. The change magnitude of the open circuit potentials for Mg-(0.25, 2.5)Y alloys was greater than that of Mg-(5, 8 and 15)-Y alloys. The polarization curves of Mg (0.25, 2.5, 5, 8 and 15) Y alloys had the similar shape after aging treatment, and the slopes of the anodic branch were greater than those of the cathodic branches. After aging treatment, the corrosion modes of Mg-0.25Y and Mg-(2.5, 5, 8 and 15) Y alloys were uniform corrosion and pitting corrosion with small local deep corrosion.
基金Project(2017YFC0805406)supported by the National Key Research and Development Program of ChinaProjects(51879142,51679123)supported by the National Natural Science Foundation of ChinaProject(2020-KY-04)supported by the Research Fund Program of the State Key Laboratory of Hydroscience and Engineering,China。
文摘Based on the interface shear tests,the macro-and meso-mechanical behaviors of interaction between coral sand and different structure surfaces are studied,in which CCD camera is used to capture digital images to analyze the evolution of the interaction band and a particle analysis apparatus is applied to studying the distribution characteristics of particle morphology.This study proposes four-stage evolution process based on the shear stress−strain curve.During the shear process,coral sand particles slide and rotate within the interaction band,causing the changes in shear stress and vertical displacement.In addition,the effects of structure surface roughness on shear strength,volume change and particle breakage are illustrated that the greater the roughness of slabs is,the larger the shear stress is,the more obvious the contraction effect is and the more the particles break.Furthermore,the change in particle’s 3D morphology during the breakage will change not only their size but also other morphological characteristics with convergence and self-organization.
文摘The effect of surface roughness of aluminum oxide (95%) substrate on the properties of Ni-Cr alloy thin film is studied.The thin films are prepared on the substrates with different roughness by using magnetron sputtering.The micro-structure,adhesive and electrical properties of the thin films were investigated by using scanning electron microscopy,scratch method and four-probe method.The burst voltage and current of the thin film transducers with different substrates were measured according to D-optimization method.The results show that the particle size,structural defect,resistivity and adhesion strength of the thin film increase with the increase of the substrate roughness.The difference among the burst time of the samples with difference substrate roughness gradually decreases with the increase of stimulation amount.The burst time is approximate to 20 μs in the charging voltage of 37 V.