“双碳”目标背景下,为解决热电联产机组“以热定电”模式导致的大规模弃风问题,本文提出基于先进绝热压缩空气储能电站(advanced adiabatic compressed air energy storage,AA-CAES)和综合需求响应的综合能源系统(integrated energy sy...“双碳”目标背景下,为解决热电联产机组“以热定电”模式导致的大规模弃风问题,本文提出基于先进绝热压缩空气储能电站(advanced adiabatic compressed air energy storage,AA-CAES)和综合需求响应的综合能源系统(integrated energy system,IES)供暖期弃风消纳策略。首先,在“源-储”两侧建立热电联产机组与AA-CAES电站耦合运行模型,分析耦合运行实现热电解耦机理;其次,在“荷”侧引入价格型和替代型需求响应机制来探寻负荷侧优化系统调度潜力;然后,在IES中引入碳捕集系统和阶梯型碳交易机制来约束碳排放,并在碳排放量最少、综合成本最低为目标构建IES运行基础上,引入模糊机会规划约束模型来分析风、光不确定性对系统调度影响;最后,利用西北某地区实际数据进行算例验证。结果表明:热电机组与AA-CAES电站耦合运行相较于未耦合运行可提高风电消纳率84.55%、降低总成本11.42%、减少碳排放20.28%;综合需求响应机制的引入可进一步提高风电消纳率35.00%、降低总成本20.93%、减少碳排放24.43%;风光不确定性的上升会提高与外部电网的交互成本。展开更多
为缓解弃风问题带来的不利影响及提高风能的利用率,基于先进绝热压缩空气储能(Avanced Adiabatic Compressed Air Energy Storage,AA-CAES)技术,对输出功率为100 MW的蓄热式AA-CAES概念电站进行了初步设计,并对其进行了性能计算与经济...为缓解弃风问题带来的不利影响及提高风能的利用率,基于先进绝热压缩空气储能(Avanced Adiabatic Compressed Air Energy Storage,AA-CAES)技术,对输出功率为100 MW的蓄热式AA-CAES概念电站进行了初步设计,并对其进行了性能计算与经济性分析。性能计算结果表明,该电站年发电量约为1亿k W·h,弃风电量回收率约为62.64%,储能密度可达8.23 MJ/m3,蓄热效率为46.5%;经济性分析显示,该电站容量成本约为4,704.5元/k W;电站年运行成本约为4,402万元;电站年总效益可达27,232万元,年财务收益约2,573万元,年均利润率为2.34%。分析了储能购电价格变动对年运行费用及度电成本影响;得到了不同购电价格下,成本回收年限与释能电价的变化情况,为电站上网电价的定价提供参考。展开更多
为更好地发挥先进绝热压缩空气储能(advanced adiabatic compressed air energy storage,AA-CAES)装置与微型综合能源系统(micro-integrated energy system,MIES)多能协调互补等优势,优化系统运行经济性及灵活性,提出一种考虑AA-CAES装...为更好地发挥先进绝热压缩空气储能(advanced adiabatic compressed air energy storage,AA-CAES)装置与微型综合能源系统(micro-integrated energy system,MIES)多能协调互补等优势,优化系统运行经济性及灵活性,提出一种考虑AA-CAES装置参与热电联储/供的MIES优化运行策略。首先,提出了含AA-CAES的MIES系统热电联储/供的调度架构;其次,分析了AA-CAES装置储热、换热及供热等关键环节的运行特性,建立了AA-CAES进行热电联储/供及提供旋转备用的调度模型;在此基础上,综合考虑交直流配电网和区域供热系统中调度资源的运行特点,构建了计及AA-CAES装置热电联储/供特性的MIES整体调度模型;最后,采用修改IEEE 14节点配电网和母线式区域供热系统进行算例分析。仿真结果表明,所提优化运行策略可有效削减MIES运行成本,提高MIES可再生能源消纳能力,增强MIES运行灵活性。展开更多
考虑冷热电多种负荷需求响应(Demand response, DR),引入碳排放成本,并以日总成本最小为目标,构建了一个含先进绝热压缩空气储能(Advanced adiabatic compressed air energy storage, AA-CAES)的冷电热综合能源系统(Integrated cold-ele...考虑冷热电多种负荷需求响应(Demand response, DR),引入碳排放成本,并以日总成本最小为目标,构建了一个含先进绝热压缩空气储能(Advanced adiabatic compressed air energy storage, AA-CAES)的冷电热综合能源系统(Integrated cold-electricity-heat energy system, ICEHS)优化运行模型。首先,考虑冷热电3种负荷的需求响应,对AA-CAES产生的电能、热能和冷能进行建模。其次,对源荷不确定性采用拉丁超立方采样与K-means聚类相结合的方法进行处理。最后,以ICEHS购能成本、运维成本、需求响应成本、碳排放成本之和最小为目标函数进行研究。以一个典型的社区综合能源系统作为算例,设置4种典型场景对所提模型的有效性进行验证。结果表明:AA-CAES和DR能有效降低ICEHS成本和碳排放量。展开更多
先进压缩空气储能(advanced compressed air energy storage,A-CAES)具有大容量、非补燃、寿命长、比投资小等突出优势,已成为最具潜力与发展前景的新型储能技术之一。为充分挖掘A-CAES潜能,并提升其优化规划的合理性,提出了一种考虑调...先进压缩空气储能(advanced compressed air energy storage,A-CAES)具有大容量、非补燃、寿命长、比投资小等突出优势,已成为最具潜力与发展前景的新型储能技术之一。为充分挖掘A-CAES潜能,并提升其优化规划的合理性,提出了一种考虑调峰-备用-爬坡-惯量多应用价值的大规模A-CAES多阶段优化规划策略。首先,考虑新能源与负荷增长进程,提出大规模A-CAES多阶段优化规划架构与流程;其次,研究A-CAES在削峰填谷、事故备用、灵活爬坡、惯量支撑等方面的应用价值及运行特性,最后,以多阶段经济价值与多尺度功效价值为需求导向,将上述运行特性映射为规划边界,构建大规模A-CAES多阶段优化规划模型。基于改进IEEE-118节点系统开展算例分析,结果表明:所提策略能够充分考虑大规模A-CAES多应用价值进行配置,避免因超前投资与粗略估计造成的储能资源冗余。展开更多
先进绝热压缩空气储能(advanced adiabatic compressed air energy storage,AA-CAES)具备天然的热电联供特性,能够有效缓解供热期出现的弃风问题。若能在规划阶段充分考虑运行需求,进而合理地配置储能容量,则能够在解决弃风问题的前提下...先进绝热压缩空气储能(advanced adiabatic compressed air energy storage,AA-CAES)具备天然的热电联供特性,能够有效缓解供热期出现的弃风问题。若能在规划阶段充分考虑运行需求,进而合理地配置储能容量,则能够在解决弃风问题的前提下,最大程度对燃煤机组进行清洁替代。为此,该文提出了多热源协同互补的AA-CAES系统容量配置模型。首先本模型在能量输入端引入电锅炉预热压缩机入口空气,以增大压缩机输气系数并提高机组产热量;其次在扩展热源端,通过太阳能反射镜场收集光热,以提高系统储热水平;并在计及储能系统各模块实际运行效率约束之余,以运行总成本最小为目标,计算储能容量配置最优解。再次,分析供热时长及环境温度等因素对投资成本回收年限的影响,并计算不同情况下本模型投资成本的回收年限,得出建设本模型可盈利的硬性条件;最后,基于东北某地区供热期及非供热期典型日负荷及气象数据在IEEE-39节点系统完成算例分析,验证所提模型有效性。展开更多
先进绝热压缩空气储能(advanced adiabatic compressed air energy storage system,AA-CAES)仿真建模及分析是其工程实践的基础。然而,目前模型一般基于理想工况建立,分析结果与实际工况相偏差较大,无法指导工程应用。为此,在传统热力...先进绝热压缩空气储能(advanced adiabatic compressed air energy storage system,AA-CAES)仿真建模及分析是其工程实践的基础。然而,目前模型一般基于理想工况建立,分析结果与实际工况相偏差较大,无法指导工程应用。为此,在传统热力学模型基础上,考虑了空气流动阻力损失和能量转换设备损耗等因素,建立了面向工程应用的AA-CAES模型并以200MW盐穴AA-CAES系统为例进行了分析。同时,对系统效率分析方法进行改进并对其进行了先进㶲分析。结果表明,空气管道㶲损失占总㶲损失比例接近7%,能量转换设备损耗导致电-电效率比轴功效率低5%,二者对系统性能影响较大,在进行工程设计时不可以忽略。系统各部件可避免㶲损失占比均较大,表明系统具有较大的性能提升潜力。各部件㶲损失为其内部㶲损失,与其他部件是否工作在最佳状态关系不大。展开更多
随着大规模新能源接入电网,新型电力系统“低惯量、弱支撑”特征凸显,电网频率调节资源日益稀缺,系统频率稳定问题愈发严峻。先进绝热压缩空气储能(advanced adiabatic compressed air energy storage,AA-CAES)具有容量大、寿命长等优...随着大规模新能源接入电网,新型电力系统“低惯量、弱支撑”特征凸显,电网频率调节资源日益稀缺,系统频率稳定问题愈发严峻。先进绝热压缩空气储能(advanced adiabatic compressed air energy storage,AA-CAES)具有容量大、寿命长等优势而受到广泛关注,但由于其储能和释能过程涉及气-热动态耦合过程,调频特性较为复杂,调频潜力还有待挖掘。因此,首先建立AA-CAES系统全工况动态仿真模型,进而基于期望频率动态曲线设计AA-CAES系统调频传递函数,优化目标传递函数关键参数,实现AA-CAES最小动态功率补偿下满足系统频率调节需求。最后通过仿真实验,验证了所提控制策略可优化AA-CAES调频容量的同时减小系统的稳态频率偏差与频率超调量,显著改善频率响应特性,为建设电网友好型AA-CAES电站提供技术支撑。展开更多
为加强先进绝热压缩空气储能(Advanced Adiabatic Compressed Air Energy Storage,AA-CAES)与综合能源系统(Integrated Energy Systems,IES)的多能互补协同,提高系统运行效率,文中提出了一种含AA-CAES能源站的电-热综合能源系统优化运...为加强先进绝热压缩空气储能(Advanced Adiabatic Compressed Air Energy Storage,AA-CAES)与综合能源系统(Integrated Energy Systems,IES)的多能互补协同,提高系统运行效率,文中提出了一种含AA-CAES能源站的电-热综合能源系统优化运行方法。构建了含AA-CAES能源站的IES基本调度架构,详细分析了AA-CAES装置在压缩和膨胀工况下的储热、换热及供热等特性,建立了AA-CAES电热联供联储运行模型;基于热网管道传热延迟和损耗等动态特性,建立了考虑供热网储热惯性的热网方程;在此基础上,考虑了用户侧可调度资源,提出了计及综合需求响应的含AA-CAES能源站的IES日前优化运行模型;在修改的IEEE 33节点配电网和巴厘岛32节点区域供热网进行算例分析。仿真结果表明,所提方法可有效降低IES运行成本,提高IES可再生能源消纳能力。展开更多
大规模压缩空气储能技术是实现电网削峰填谷,解决风电、光伏等波动性新能源并网消纳问题的有效手段。以高压容器为主的储气模式建设成本较高,限制了其装机容量和推广应用。盐穴储气具有建设成本低、占地面积小、技术成熟、密封性好、储...大规模压缩空气储能技术是实现电网削峰填谷,解决风电、光伏等波动性新能源并网消纳问题的有效手段。以高压容器为主的储气模式建设成本较高,限制了其装机容量和推广应用。盐穴储气具有建设成本低、占地面积小、技术成熟、密封性好、储气压力高、安全稳定等优点,可以满足大规模先进绝热压缩空气储能的储气技术需求。文章首先介绍了盐穴储气技术的特点,进一步结合江苏金坛压缩空气储能国家示范项目,阐述了基于盐穴储气的先进绝热压缩空气储能系统(salt cavern advanced adiabatic compressed air energy storage,SC-AA-CAES)的工作原理,分析了系统的关键技术问题。最后,针对未来智能电网发展趋势,探讨了盐穴压缩空气储能技术的应用前景。展开更多
作为一种清洁物理储能技术,先进绝热压缩空气储能(advanced adiabatic compressed air energy storage system,AA-CAES)具有优良的辅助服务特性、多能联供联储能力,可为清洁能源的高效消纳注入新活力。该文直面AA-CAES技术在智能...作为一种清洁物理储能技术,先进绝热压缩空气储能(advanced adiabatic compressed air energy storage system,AA-CAES)具有优良的辅助服务特性、多能联供联储能力,可为清洁能源的高效消纳注入新活力。该文直面AA-CAES技术在智能电网和综合能源系统的应用,在分析AA-CAES电站优良的动态特性的基础上,梳理AA-CAES电站建模、能效提升、运行规划及市场运营等方面的研究现状,指出当前研究瓶颈,明确后期应用研究的重点。希望能为智能电网和综合能源系统的AA-CAES技术相关研究提供参考,指导其应用推广。展开更多
文摘“双碳”目标背景下,为解决热电联产机组“以热定电”模式导致的大规模弃风问题,本文提出基于先进绝热压缩空气储能电站(advanced adiabatic compressed air energy storage,AA-CAES)和综合需求响应的综合能源系统(integrated energy system,IES)供暖期弃风消纳策略。首先,在“源-储”两侧建立热电联产机组与AA-CAES电站耦合运行模型,分析耦合运行实现热电解耦机理;其次,在“荷”侧引入价格型和替代型需求响应机制来探寻负荷侧优化系统调度潜力;然后,在IES中引入碳捕集系统和阶梯型碳交易机制来约束碳排放,并在碳排放量最少、综合成本最低为目标构建IES运行基础上,引入模糊机会规划约束模型来分析风、光不确定性对系统调度影响;最后,利用西北某地区实际数据进行算例验证。结果表明:热电机组与AA-CAES电站耦合运行相较于未耦合运行可提高风电消纳率84.55%、降低总成本11.42%、减少碳排放20.28%;综合需求响应机制的引入可进一步提高风电消纳率35.00%、降低总成本20.93%、减少碳排放24.43%;风光不确定性的上升会提高与外部电网的交互成本。
文摘为缓解弃风问题带来的不利影响及提高风能的利用率,基于先进绝热压缩空气储能(Avanced Adiabatic Compressed Air Energy Storage,AA-CAES)技术,对输出功率为100 MW的蓄热式AA-CAES概念电站进行了初步设计,并对其进行了性能计算与经济性分析。性能计算结果表明,该电站年发电量约为1亿k W·h,弃风电量回收率约为62.64%,储能密度可达8.23 MJ/m3,蓄热效率为46.5%;经济性分析显示,该电站容量成本约为4,704.5元/k W;电站年运行成本约为4,402万元;电站年总效益可达27,232万元,年财务收益约2,573万元,年均利润率为2.34%。分析了储能购电价格变动对年运行费用及度电成本影响;得到了不同购电价格下,成本回收年限与释能电价的变化情况,为电站上网电价的定价提供参考。
文摘为更好地发挥先进绝热压缩空气储能(advanced adiabatic compressed air energy storage,AA-CAES)装置与微型综合能源系统(micro-integrated energy system,MIES)多能协调互补等优势,优化系统运行经济性及灵活性,提出一种考虑AA-CAES装置参与热电联储/供的MIES优化运行策略。首先,提出了含AA-CAES的MIES系统热电联储/供的调度架构;其次,分析了AA-CAES装置储热、换热及供热等关键环节的运行特性,建立了AA-CAES进行热电联储/供及提供旋转备用的调度模型;在此基础上,综合考虑交直流配电网和区域供热系统中调度资源的运行特点,构建了计及AA-CAES装置热电联储/供特性的MIES整体调度模型;最后,采用修改IEEE 14节点配电网和母线式区域供热系统进行算例分析。仿真结果表明,所提优化运行策略可有效削减MIES运行成本,提高MIES可再生能源消纳能力,增强MIES运行灵活性。
文摘考虑冷热电多种负荷需求响应(Demand response, DR),引入碳排放成本,并以日总成本最小为目标,构建了一个含先进绝热压缩空气储能(Advanced adiabatic compressed air energy storage, AA-CAES)的冷电热综合能源系统(Integrated cold-electricity-heat energy system, ICEHS)优化运行模型。首先,考虑冷热电3种负荷的需求响应,对AA-CAES产生的电能、热能和冷能进行建模。其次,对源荷不确定性采用拉丁超立方采样与K-means聚类相结合的方法进行处理。最后,以ICEHS购能成本、运维成本、需求响应成本、碳排放成本之和最小为目标函数进行研究。以一个典型的社区综合能源系统作为算例,设置4种典型场景对所提模型的有效性进行验证。结果表明:AA-CAES和DR能有效降低ICEHS成本和碳排放量。
文摘先进压缩空气储能(advanced compressed air energy storage,A-CAES)具有大容量、非补燃、寿命长、比投资小等突出优势,已成为最具潜力与发展前景的新型储能技术之一。为充分挖掘A-CAES潜能,并提升其优化规划的合理性,提出了一种考虑调峰-备用-爬坡-惯量多应用价值的大规模A-CAES多阶段优化规划策略。首先,考虑新能源与负荷增长进程,提出大规模A-CAES多阶段优化规划架构与流程;其次,研究A-CAES在削峰填谷、事故备用、灵活爬坡、惯量支撑等方面的应用价值及运行特性,最后,以多阶段经济价值与多尺度功效价值为需求导向,将上述运行特性映射为规划边界,构建大规模A-CAES多阶段优化规划模型。基于改进IEEE-118节点系统开展算例分析,结果表明:所提策略能够充分考虑大规模A-CAES多应用价值进行配置,避免因超前投资与粗略估计造成的储能资源冗余。
文摘先进绝热压缩空气储能(advanced adiabatic compressed air energy storage,AA-CAES)具备天然的热电联供特性,能够有效缓解供热期出现的弃风问题。若能在规划阶段充分考虑运行需求,进而合理地配置储能容量,则能够在解决弃风问题的前提下,最大程度对燃煤机组进行清洁替代。为此,该文提出了多热源协同互补的AA-CAES系统容量配置模型。首先本模型在能量输入端引入电锅炉预热压缩机入口空气,以增大压缩机输气系数并提高机组产热量;其次在扩展热源端,通过太阳能反射镜场收集光热,以提高系统储热水平;并在计及储能系统各模块实际运行效率约束之余,以运行总成本最小为目标,计算储能容量配置最优解。再次,分析供热时长及环境温度等因素对投资成本回收年限的影响,并计算不同情况下本模型投资成本的回收年限,得出建设本模型可盈利的硬性条件;最后,基于东北某地区供热期及非供热期典型日负荷及气象数据在IEEE-39节点系统完成算例分析,验证所提模型有效性。
文摘先进绝热压缩空气储能(advanced adiabatic compressed air energy storage system,AA-CAES)仿真建模及分析是其工程实践的基础。然而,目前模型一般基于理想工况建立,分析结果与实际工况相偏差较大,无法指导工程应用。为此,在传统热力学模型基础上,考虑了空气流动阻力损失和能量转换设备损耗等因素,建立了面向工程应用的AA-CAES模型并以200MW盐穴AA-CAES系统为例进行了分析。同时,对系统效率分析方法进行改进并对其进行了先进㶲分析。结果表明,空气管道㶲损失占总㶲损失比例接近7%,能量转换设备损耗导致电-电效率比轴功效率低5%,二者对系统性能影响较大,在进行工程设计时不可以忽略。系统各部件可避免㶲损失占比均较大,表明系统具有较大的性能提升潜力。各部件㶲损失为其内部㶲损失,与其他部件是否工作在最佳状态关系不大。
文摘随着大规模新能源接入电网,新型电力系统“低惯量、弱支撑”特征凸显,电网频率调节资源日益稀缺,系统频率稳定问题愈发严峻。先进绝热压缩空气储能(advanced adiabatic compressed air energy storage,AA-CAES)具有容量大、寿命长等优势而受到广泛关注,但由于其储能和释能过程涉及气-热动态耦合过程,调频特性较为复杂,调频潜力还有待挖掘。因此,首先建立AA-CAES系统全工况动态仿真模型,进而基于期望频率动态曲线设计AA-CAES系统调频传递函数,优化目标传递函数关键参数,实现AA-CAES最小动态功率补偿下满足系统频率调节需求。最后通过仿真实验,验证了所提控制策略可优化AA-CAES调频容量的同时减小系统的稳态频率偏差与频率超调量,显著改善频率响应特性,为建设电网友好型AA-CAES电站提供技术支撑。
文摘为加强先进绝热压缩空气储能(Advanced Adiabatic Compressed Air Energy Storage,AA-CAES)与综合能源系统(Integrated Energy Systems,IES)的多能互补协同,提高系统运行效率,文中提出了一种含AA-CAES能源站的电-热综合能源系统优化运行方法。构建了含AA-CAES能源站的IES基本调度架构,详细分析了AA-CAES装置在压缩和膨胀工况下的储热、换热及供热等特性,建立了AA-CAES电热联供联储运行模型;基于热网管道传热延迟和损耗等动态特性,建立了考虑供热网储热惯性的热网方程;在此基础上,考虑了用户侧可调度资源,提出了计及综合需求响应的含AA-CAES能源站的IES日前优化运行模型;在修改的IEEE 33节点配电网和巴厘岛32节点区域供热网进行算例分析。仿真结果表明,所提方法可有效降低IES运行成本,提高IES可再生能源消纳能力。
文摘大规模压缩空气储能技术是实现电网削峰填谷,解决风电、光伏等波动性新能源并网消纳问题的有效手段。以高压容器为主的储气模式建设成本较高,限制了其装机容量和推广应用。盐穴储气具有建设成本低、占地面积小、技术成熟、密封性好、储气压力高、安全稳定等优点,可以满足大规模先进绝热压缩空气储能的储气技术需求。文章首先介绍了盐穴储气技术的特点,进一步结合江苏金坛压缩空气储能国家示范项目,阐述了基于盐穴储气的先进绝热压缩空气储能系统(salt cavern advanced adiabatic compressed air energy storage,SC-AA-CAES)的工作原理,分析了系统的关键技术问题。最后,针对未来智能电网发展趋势,探讨了盐穴压缩空气储能技术的应用前景。
文摘作为一种清洁物理储能技术,先进绝热压缩空气储能(advanced adiabatic compressed air energy storage system,AA-CAES)具有优良的辅助服务特性、多能联供联储能力,可为清洁能源的高效消纳注入新活力。该文直面AA-CAES技术在智能电网和综合能源系统的应用,在分析AA-CAES电站优良的动态特性的基础上,梳理AA-CAES电站建模、能效提升、运行规划及市场运营等方面的研究现状,指出当前研究瓶颈,明确后期应用研究的重点。希望能为智能电网和综合能源系统的AA-CAES技术相关研究提供参考,指导其应用推广。