>Transformer faults are quite complicated phenomena and can occur due to a variety of reasons.There have been several methods for transformer fault synthetic diagnosis,but each of them has its own limitations in re...>Transformer faults are quite complicated phenomena and can occur due to a variety of reasons.There have been several methods for transformer fault synthetic diagnosis,but each of them has its own limitations in real fault diagnosis applications.In order to overcome those shortcomings in the existing methods,a new transformer fault diagnosis method based on a wavelet neural network optimized by adaptive genetic algorithm(AGA)and an improved D-S evidence theory fusion technique is proposed in this paper.The proposed method combines the oil chromatogram data and the off-line electrical test data of transformers to carry out fault diagnosis.Based on the fusion mechanism of D-S evidence theory,the comprehensive reliability of evidence is constructed by considering the evidence importance,the outputs of the neural network and the expert experience.The new method increases the objectivity of the basic probability assignment(BPA)and reduces the basic probability assigned for uncertain and unimportant information.The case study results of using the proposed method show that it has a good performance of fault diagnosis for transformers.展开更多
The Manchu character recognition method based on Manchu character unit is an efficient method.In this method,the recognition accuracy rate of Manchu character unit has great influence on the final recognition result.A...The Manchu character recognition method based on Manchu character unit is an efficient method.In this method,the recognition accuracy rate of Manchu character unit has great influence on the final recognition result.As new approach to solve this problem,a hybrid wavelet neural network scheme has been developed as an assistant method combine with the original combo-distance method.Due to the properties of the wavelet neural network,the training problem can be transformed into a convex optimization process,therefore the global minimum can be obtained and the learning speed is increases.Both the learning samples set and testing samples set are used,experimental results demonstrate the combine method based on the wavelet neural network is more efficient than the single combo-distance method.展开更多
Considering the relatively poor robustness of quality scores for different types of distortion and the lack of mechanism for determining distortion types, a no-reference image quality assessment(NR-IQA) method based o...Considering the relatively poor robustness of quality scores for different types of distortion and the lack of mechanism for determining distortion types, a no-reference image quality assessment(NR-IQA) method based on the Ada Boost BP neural network in the wavelet domain(WABNN) is proposed. A 36-dimensional image feature vector is constructed by extracting natural scene statistics(NSS) features and local information entropy features of the distorted image wavelet sub-band coefficients in three scales. The ABNN classifier is obtained by learning the relationship between image features and distortion types. The ABNN scorer is obtained by learning the relationship between image features and image quality scores. A series of contrast experiments are carried out in the laboratory of image and video engineering(LIVE) database and TID2013 database. Experimental results show the high accuracy of the distinguishing distortion type, the high consistency with subjective scores and the high robustness of the method for distorted images. Experiment results also show the independence of the database and the relatively high operation efficiency of this method.展开更多
基金Project Supported by National Natural Science Foundation of China ( 50777069 ).
文摘>Transformer faults are quite complicated phenomena and can occur due to a variety of reasons.There have been several methods for transformer fault synthetic diagnosis,but each of them has its own limitations in real fault diagnosis applications.In order to overcome those shortcomings in the existing methods,a new transformer fault diagnosis method based on a wavelet neural network optimized by adaptive genetic algorithm(AGA)and an improved D-S evidence theory fusion technique is proposed in this paper.The proposed method combines the oil chromatogram data and the off-line electrical test data of transformers to carry out fault diagnosis.Based on the fusion mechanism of D-S evidence theory,the comprehensive reliability of evidence is constructed by considering the evidence importance,the outputs of the neural network and the expert experience.The new method increases the objectivity of the basic probability assignment(BPA)and reduces the basic probability assigned for uncertain and unimportant information.The case study results of using the proposed method show that it has a good performance of fault diagnosis for transformers.
文摘The Manchu character recognition method based on Manchu character unit is an efficient method.In this method,the recognition accuracy rate of Manchu character unit has great influence on the final recognition result.As new approach to solve this problem,a hybrid wavelet neural network scheme has been developed as an assistant method combine with the original combo-distance method.Due to the properties of the wavelet neural network,the training problem can be transformed into a convex optimization process,therefore the global minimum can be obtained and the learning speed is increases.Both the learning samples set and testing samples set are used,experimental results demonstrate the combine method based on the wavelet neural network is more efficient than the single combo-distance method.
基金supported by the National Natural Science Foundation of China(61471194 61705104)+1 种基金the Science and Technology on Avionics Integration Laboratory and Aeronautical Science Foundation of China(20155552050)the Natural Science Foundation of Jiangsu Province(BK20170804)
文摘Considering the relatively poor robustness of quality scores for different types of distortion and the lack of mechanism for determining distortion types, a no-reference image quality assessment(NR-IQA) method based on the Ada Boost BP neural network in the wavelet domain(WABNN) is proposed. A 36-dimensional image feature vector is constructed by extracting natural scene statistics(NSS) features and local information entropy features of the distorted image wavelet sub-band coefficients in three scales. The ABNN classifier is obtained by learning the relationship between image features and distortion types. The ABNN scorer is obtained by learning the relationship between image features and image quality scores. A series of contrast experiments are carried out in the laboratory of image and video engineering(LIVE) database and TID2013 database. Experimental results show the high accuracy of the distinguishing distortion type, the high consistency with subjective scores and the high robustness of the method for distorted images. Experiment results also show the independence of the database and the relatively high operation efficiency of this method.