DCPTA (2-diethylaminoethyl-3, 4-dichlorophenylether) is a new plant regulator which can be used to regulate growth and development for crops. Experiments on maize seedlings were conducted in the growth chamber to st...DCPTA (2-diethylaminoethyl-3, 4-dichlorophenylether) is a new plant regulator which can be used to regulate growth and development for crops. Experiments on maize seedlings were conducted in the growth chamber to study the effects of foliar applied DCPTA. The plant pots were placed in a completely randomized design with three replicates. The maize seedlings were treated with 0 mg·L-1 (control), 20 mg·L-1 and 40 mg·L-1 DCPTA solution. The effects of DCPTA on the photosynthetic characteristics (photosynthesis, stomata conductance, intercellular CO2, and transpiration rate), related physiological characteristics (contents of soluble sugar and starch), chlorophyll fluorescence parameters (Fo, Fro, Fv/Fm, Fv/Fo, qP, and qN) and the weight of dry matter in maize seedling were studied. The results showed that DCPTA enhanced photosynthesis of maize seedling. In general, photosynthetic rate in leaves was significantly promoted through spraying DCPTA solution, and 40 rag" L~ DCPTA was found to be the best concentration for maize. The relationship between stomata conductance and transpiration rate in maize leaves could be described as linear. With regard to the chlorophyll fluorescence parameters, our fmdings showed that 40 mg·L-1 DCPTA in maize seedling caused an increase in Fm, Fv/Fm, Fm/Fo, qP and a decrease in Fo and qN at some time points checked. It is suggested that DCPTA increased photosynthetic rate by raising both the content of chlorophyll and activities of PSII and the contents of sugar and starch. Compared with the control, the treated maize seedling caused an increase in plant height, root length, shoot dry mass, root dry mass, or the total (root plus shoot) dry mass.展开更多
Background Aphis gossypii(Hemiptera:Aphididae)is a worldwide polyphagous phloem-feeding agricultural pest,and it can produce offspring by sexual or asexual reproduction.Compared with dozens of generations by parthenog...Background Aphis gossypii(Hemiptera:Aphididae)is a worldwide polyphagous phloem-feeding agricultural pest,and it can produce offspring by sexual or asexual reproduction.Compared with dozens of generations by parthenogenesis,sexual reproduction is performed in only one generation within one year,and little is known about the sexual reproduction of A.gossypii.In this study,sexual females of A.gossypii were successfully obtained through a previously established induction platform,and the morphological characteristics,developmental dynamics,and temporal gene expression were examined.Subsequently,signaling pathways potentially involved in regulating the growth,development,and reproduction of sexual females were investigated.Results The morphological observation showed that from the 1st instar nymph to adult,sexual females exhibited a gradually deepened body color,an enlarged body size,longer antennae with a blackened end,and obviously protruding cauda(in adulthood).The anatomy found that the ovaries of sexual females developed rapidly from the 2^(nd)instar nymph,and the embedded oocytes matured in adulthood.In addition,time-course transcriptome analysis revealed that gene expression profiles across the development of sexual females fell into 9 clusters with distinct patterns,in which gene expression levels in clusters 1,5,and 8 peaked at the 2^(nd)instar nymphal stage with the largest number of up-regulated genes,suggesting that the 2^(nd)instar nymph was an important ovary development period.Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis revealed that a large number of genes in the sexual female adult were enriched in the TGF-beta signaling pathway and Forkhead box O(FoxO)signaling pathway,highlighting their important role in sexual female adult development and reproduction.Conclusion The morphological changes of the sexual female at each developmental stage were revealed for the first time.In addition,time-course transcriptomic analyses suggest genes enriched in the TGF-beta signaling pathway and FoxO signaling pathway probably contribute to regulating the development and oocyte maturation of sexual females.Overall,these findings will facilitate the regulating mechanism research in the growth and development of sexual females by providing candidate genes.展开更多
Background:Recently,due to the development of food security strategies,cotton has been planted in inland saline-alkali dry soils or in coastal some saline-alkali soils in China.Under the condition,to comprehensively p...Background:Recently,due to the development of food security strategies,cotton has been planted in inland saline-alkali dry soils or in coastal some saline-alkali soils in China.Under the condition,to comprehensively prevent and control Helicoverpa armigera in cotton fields with saline-alkali soils,it is important to study the larval growth and development of H.armigero and to study adult oviposition selectivity in H.armigera adults that feed on NaCI-stNaCled cotton plants.Results:In this study,Bt cotton GK19 was used for the experimental group and its nontransgenic parent Simian 3 was used for the control to study the effects of biochemical substances in cotton as well as larval growth and development and adult oviposition selectivity of H.armigera.The experiments were performed by growing cotton indoors under NaCl stress at concentrations of 0 mmol-L^(-1),75 mmol-L^(-1)and 150 mmol-L^(-1),respectively.The results showed that the expression of Bt protein was significantly inhibited for NaCI-stressed Bt cotNaClThe content of soluble protein and K^(+)in the leaves of cotton were decreased,while the content of gossypol and Na+were increased.In addition,the 5th instar H.armigera larvae exhibited shorten the life span in a 13-day trial period.Under enclosure treatments and at different female densities,the adult oviposition of H.armigera decreased on high NaCI-stressed nontransgenic coNaCl,while the oviposition on Bt cotton tended to first increase but then decrease under low,moderate and high NaCl stress treatments.Conclusions:Under certain content ranges of NaCl stress treatments,larval of H.armigera growth and development,and adult oviposition were no significant difference in the change for a certain period.However,under high NaCl stress,larval growth,development and adult oviposition were affected,which may provide insights for the prevention and control of H.armigero for Bt cotton in saline-alkali soils.展开更多
The mammalian target of rapamycin (mTOR) signaling pathway is evolutionarily conserved, mTOR can integrate and converge a wide range of signals, including intracellular and extracellular nutrients, growth factors, e...The mammalian target of rapamycin (mTOR) signaling pathway is evolutionarily conserved, mTOR can integrate and converge a wide range of signals, including intracellular and extracellular nutrients, growth factors, energy and stress conditions, and has a crucial role in the vertebrate growth control. This review analyzed the main components and regulated factors of TOR signaling pathway, explained functions and mechanisms of roTOR during the individual growth, the development and its dynamic role, revealed its additional functions beyond the cell growth control, and finally reviewed the tissue specificity and time specificity of mTOR signaling pathway, and its regulation on sexual differentiation, tissue differentiation and organogenesis in the individual development.展开更多
The observation of body height and weight of 10 captured wild yak shows the body height and weight of the wild yak at three and four months old were similar with that of domestic yak. At their 24 months old, the body ...The observation of body height and weight of 10 captured wild yak shows the body height and weight of the wild yak at three and four months old were similar with that of domestic yak. At their 24 months old, the body height and weight were higher by 26.9 % and 62.5 % than that of the domestic ones. The results indicate that, once adapted to the half-shed and half-grazing conditions, the tamed Kunlun type of wild yak with superior genetics would grow and develop faster than the domestic yak at elder ages.展开更多
This paper explores the development of the human resource management theory from the perspective of social productive forces,deeply analyzing the development of the current social productive forces and the characteris...This paper explores the development of the human resource management theory from the perspective of social productive forces,deeply analyzing the development of the current social productive forces and the characteristics of the socio-economic development.It can be concluded that the development of the human resource management theory is closely related to the socio-economic development pattern.The twenty first century is a knowledge-driven era,and"eco-friendly"and"low-carbon"are the basic characteristics of the socio-economic development of the era of the knowledge-driven economy,which has great influence on the subject,aim and content of human resource management.Green human resource management conforms to the trend of the transformation of the socio-economic development.Based on the management of"human",it creates an eco-friendly,low-carbon and sustainable environment for enterprises,which promotes the transformation from extensive growth to intensive growth of the macro management of enterprises.展开更多
基金Supported by the National Natural Science Foundation of China(31201164)the Program of Science and Technology of Education Department of Heilongjiang Province(12521036)+2 种基金China Postdoctoral Science Foundation(2012M511434)Heilongjiang Province Postdoctoral Science Foundation(LBH-Z12036)the Doctoral Starting Up Foundation of Northeast Agricultural University(2012RCB01)
文摘DCPTA (2-diethylaminoethyl-3, 4-dichlorophenylether) is a new plant regulator which can be used to regulate growth and development for crops. Experiments on maize seedlings were conducted in the growth chamber to study the effects of foliar applied DCPTA. The plant pots were placed in a completely randomized design with three replicates. The maize seedlings were treated with 0 mg·L-1 (control), 20 mg·L-1 and 40 mg·L-1 DCPTA solution. The effects of DCPTA on the photosynthetic characteristics (photosynthesis, stomata conductance, intercellular CO2, and transpiration rate), related physiological characteristics (contents of soluble sugar and starch), chlorophyll fluorescence parameters (Fo, Fro, Fv/Fm, Fv/Fo, qP, and qN) and the weight of dry matter in maize seedling were studied. The results showed that DCPTA enhanced photosynthesis of maize seedling. In general, photosynthetic rate in leaves was significantly promoted through spraying DCPTA solution, and 40 rag" L~ DCPTA was found to be the best concentration for maize. The relationship between stomata conductance and transpiration rate in maize leaves could be described as linear. With regard to the chlorophyll fluorescence parameters, our fmdings showed that 40 mg·L-1 DCPTA in maize seedling caused an increase in Fm, Fv/Fm, Fm/Fo, qP and a decrease in Fo and qN at some time points checked. It is suggested that DCPTA increased photosynthetic rate by raising both the content of chlorophyll and activities of PSII and the contents of sugar and starch. Compared with the control, the treated maize seedling caused an increase in plant height, root length, shoot dry mass, root dry mass, or the total (root plus shoot) dry mass.
基金funded by National Natural Science Foundation of China(No.32102214)Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences+1 种基金China Agriculture Research System(CARS-15-21)National Key R&D Program of China(2022YFD1400300)。
文摘Background Aphis gossypii(Hemiptera:Aphididae)is a worldwide polyphagous phloem-feeding agricultural pest,and it can produce offspring by sexual or asexual reproduction.Compared with dozens of generations by parthenogenesis,sexual reproduction is performed in only one generation within one year,and little is known about the sexual reproduction of A.gossypii.In this study,sexual females of A.gossypii were successfully obtained through a previously established induction platform,and the morphological characteristics,developmental dynamics,and temporal gene expression were examined.Subsequently,signaling pathways potentially involved in regulating the growth,development,and reproduction of sexual females were investigated.Results The morphological observation showed that from the 1st instar nymph to adult,sexual females exhibited a gradually deepened body color,an enlarged body size,longer antennae with a blackened end,and obviously protruding cauda(in adulthood).The anatomy found that the ovaries of sexual females developed rapidly from the 2^(nd)instar nymph,and the embedded oocytes matured in adulthood.In addition,time-course transcriptome analysis revealed that gene expression profiles across the development of sexual females fell into 9 clusters with distinct patterns,in which gene expression levels in clusters 1,5,and 8 peaked at the 2^(nd)instar nymphal stage with the largest number of up-regulated genes,suggesting that the 2^(nd)instar nymph was an important ovary development period.Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis revealed that a large number of genes in the sexual female adult were enriched in the TGF-beta signaling pathway and Forkhead box O(FoxO)signaling pathway,highlighting their important role in sexual female adult development and reproduction.Conclusion The morphological changes of the sexual female at each developmental stage were revealed for the first time.In addition,time-course transcriptomic analyses suggest genes enriched in the TGF-beta signaling pathway and FoxO signaling pathway probably contribute to regulating the development and oocyte maturation of sexual females.Overall,these findings will facilitate the regulating mechanism research in the growth and development of sexual females by providing candidate genes.
基金financial support from the National Natural Science Foundation of China(31501253)
文摘Background:Recently,due to the development of food security strategies,cotton has been planted in inland saline-alkali dry soils or in coastal some saline-alkali soils in China.Under the condition,to comprehensively prevent and control Helicoverpa armigera in cotton fields with saline-alkali soils,it is important to study the larval growth and development of H.armigero and to study adult oviposition selectivity in H.armigera adults that feed on NaCI-stNaCled cotton plants.Results:In this study,Bt cotton GK19 was used for the experimental group and its nontransgenic parent Simian 3 was used for the control to study the effects of biochemical substances in cotton as well as larval growth and development and adult oviposition selectivity of H.armigera.The experiments were performed by growing cotton indoors under NaCl stress at concentrations of 0 mmol-L^(-1),75 mmol-L^(-1)and 150 mmol-L^(-1),respectively.The results showed that the expression of Bt protein was significantly inhibited for NaCI-stressed Bt cotNaClThe content of soluble protein and K^(+)in the leaves of cotton were decreased,while the content of gossypol and Na+were increased.In addition,the 5th instar H.armigera larvae exhibited shorten the life span in a 13-day trial period.Under enclosure treatments and at different female densities,the adult oviposition of H.armigera decreased on high NaCI-stressed nontransgenic coNaCl,while the oviposition on Bt cotton tended to first increase but then decrease under low,moderate and high NaCl stress treatments.Conclusions:Under certain content ranges of NaCl stress treatments,larval of H.armigera growth and development,and adult oviposition were no significant difference in the change for a certain period.However,under high NaCl stress,larval growth,development and adult oviposition were affected,which may provide insights for the prevention and control of H.armigero for Bt cotton in saline-alkali soils.
文摘The mammalian target of rapamycin (mTOR) signaling pathway is evolutionarily conserved, mTOR can integrate and converge a wide range of signals, including intracellular and extracellular nutrients, growth factors, energy and stress conditions, and has a crucial role in the vertebrate growth control. This review analyzed the main components and regulated factors of TOR signaling pathway, explained functions and mechanisms of roTOR during the individual growth, the development and its dynamic role, revealed its additional functions beyond the cell growth control, and finally reviewed the tissue specificity and time specificity of mTOR signaling pathway, and its regulation on sexual differentiation, tissue differentiation and organogenesis in the individual development.
文摘The observation of body height and weight of 10 captured wild yak shows the body height and weight of the wild yak at three and four months old were similar with that of domestic yak. At their 24 months old, the body height and weight were higher by 26.9 % and 62.5 % than that of the domestic ones. The results indicate that, once adapted to the half-shed and half-grazing conditions, the tamed Kunlun type of wild yak with superior genetics would grow and develop faster than the domestic yak at elder ages.
基金the Eleventh Five-Year Plan Project of philosophical and social sciences of Sichuan Province
文摘This paper explores the development of the human resource management theory from the perspective of social productive forces,deeply analyzing the development of the current social productive forces and the characteristics of the socio-economic development.It can be concluded that the development of the human resource management theory is closely related to the socio-economic development pattern.The twenty first century is a knowledge-driven era,and"eco-friendly"and"low-carbon"are the basic characteristics of the socio-economic development of the era of the knowledge-driven economy,which has great influence on the subject,aim and content of human resource management.Green human resource management conforms to the trend of the transformation of the socio-economic development.Based on the management of"human",it creates an eco-friendly,low-carbon and sustainable environment for enterprises,which promotes the transformation from extensive growth to intensive growth of the macro management of enterprises.