This paper investigates the jamming sensing performance of the simultaneous transmit and receive based cognitive anti-jamming(SCAJ) receiver impaired by phase noise in local oscillators(LO) over fading channels. First...This paper investigates the jamming sensing performance of the simultaneous transmit and receive based cognitive anti-jamming(SCAJ) receiver impaired by phase noise in local oscillators(LO) over fading channels. Firstly, energy detection(ED)based on the jamming to noise ratio(JNR) of the high frequency bands SCAJ receiver with phase noise under different channels is analyzed. Then, the probabilities of jamming detection and false alarm in closed-form for the SCAJ receiver are derived. Finally,the modified Bayesian Cramer-Rao bound(BCRB) of jamming sensing for the SCAJ receiver is presented. Simulation results show that the performance degradation of the SCAJ system due to phase noise is more severe than that due to the channel fading in the circumstances where the signal bandwidth(BW) is kept a constant. Moreover, the signal BW has an effect on the phase noise in LO, and the jamming detection probability of the wideband SCAJ receiver with lower phase noise outperforms that of the narrowband receiver using the same center frequency. Furthermore,an accurate phase noise estimation and compensation scheme can improve the jamming detection capability of the SCAJ receiver in high frequency bands and approach to the upper bound.展开更多
Ultrahigh resolution synthetic aperture radar(SAR)imaging for ship targets is significant in SAR imaging,but it suffers from high frequency vibration of the platform,which will induce defocus into SAR imaging results....Ultrahigh resolution synthetic aperture radar(SAR)imaging for ship targets is significant in SAR imaging,but it suffers from high frequency vibration of the platform,which will induce defocus into SAR imaging results.In this paper,a novel compensation method based on the sinusoidal frequency modulation Fourier-Bessel transform(SFMFBT)is proposed,it can estimate the vibration errors,and the phase shift ambiguity can be avoided via extracting the time frequency ridge consequently.By constructing the corresponding compensation function and combined with the inverse SAR(ISAR)technique,well-focused imaging results can be obtained.The simulation imaging results of ship targets demonstrate the validity of the proposed approach.展开更多
In the wireless guidance system, the signals that receiver received has obvious Doppler shift for the high dynamic characteristic of the carrier. A new solution of carrier frequency tracking loop with frequency modify...In the wireless guidance system, the signals that receiver received has obvious Doppler shift for the high dynamic characteristic of the carrier. A new solution of carrier frequency tracking loop with frequency modifying system is put forward. The characteristic of cross product auto frequency control and the second order loop filter in this loop are analyzed. The simulation shows that this loop can accomplish frequency tracking well in high dynamic circumstance.展开更多
The understanding of the excitation mechanism of ultra high frequency (UHF) electromagnetic waves (EW) is essential for ap- plying UHF method to partial discharge (PD) detection. Since the EW induced by PD in gas insu...The understanding of the excitation mechanism of ultra high frequency (UHF) electromagnetic waves (EW) is essential for ap- plying UHF method to partial discharge (PD) detection. Since the EW induced by PD in gas insulated switchgear (GIS) contains not only transverse electromagnetic (TEM) wave, but also high-order transverse electric (TE) and high-order transverse magnetic (TM) waves, we analyzed the proportions between the TEM wave and the high order waves, as well as the influence of the PD position on this proportion, using the finite different time domain (FDTD) method. According to the unique characteristics of the waves, they are separated only ap- proximately. It is found that the high-order mode is the main component, more than 70%, of the electric field around the enclosure of GIS, and that with the increasing distance between PD source and inner conductors, the low frequency ( below about 800 MHz) component of EW decreases, but the high frequency component (above 1 GHz) increases, meanwhile the proportion of high-order components in EW could reach 77% from 70%. It concluded that the closer the PD source to the enclosure is, the easier high order EW may be excited.展开更多
Oxygen-free copper and pre-metalized graphite were brazed using CuNiSnP braze alloy by high frequency induction heating method. Interracial microstructures and reaction phases were analyzed by scanning electron micros...Oxygen-free copper and pre-metalized graphite were brazed using CuNiSnP braze alloy by high frequency induction heating method. Interracial microstructures and reaction phases were analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The strength and resistance of the joints were tested. It is found that when the brazing parameters are optimized, the structures of the joints are graphite/(Cu,Ni)/Ni(s.s)+NixPy/Cu3P+Cu(s.s) (including Sn)+eutectic structures (Cu3P+Ni3P+Cu(s.s)/Cu (s.s)/Cu). When the temperature increases to 750℃ or the holding time prolongs to 300 s, the eutectie structures disappear and the amount of Cu3P increases. The maximum shear strength of the joints is 5.2 MPa, which fracture at the interface of graphite and metallization. The resistance of the joints is no more than 5 mΩ.展开更多
The semiclassical transport equations are used to study the high frequency performance of AlGaAs / GaAs HBTs. Electron velocity overshoot effect and its influence on the cut off frequency characteristics of AlGaAs / G...The semiclassical transport equations are used to study the high frequency performance of AlGaAs / GaAs HBTs. Electron velocity overshoot effect and its influence on the cut off frequency characteristics of AlGaAs / GaAs HBTs with different collector design parameters are analyzed and discussed.展开更多
An electromagnetic coupling mathematical model is established by finite element method and is verified by the contrastive experiments of copper matrix Ni-TiN cylindrical coating electrode,copper electrode and Cu50 W e...An electromagnetic coupling mathematical model is established by finite element method and is verified by the contrastive experiments of copper matrix Ni-TiN cylindrical coating electrode,copper electrode and Cu50 W electrode.The wear mechanism of Ni-TiN/Cu composite electrode in the case of high-frequency pulse current is studied,and the influence of the fluctuation frequency of discharge current on electrode wear in micro-EDM is found out.Compared with the electrode made from homogeneous material,the high frequency electromagnetic properties of Ni-TiN composite layer can be used effectively to inhibit the effect of high frequency pulse on the electrode and improve the distribution trend of current density.展开更多
To improve the microcrystalline silicon thin film deposition in quality and to increase its microcrystalline silicon content,we numerically investigated the characteristics of homogeneous discharges in hydrogen dilute...To improve the microcrystalline silicon thin film deposition in quality and to increase its microcrystalline silicon content,we numerically investigated the characteristics of homogeneous discharges in hydrogen diluted silane and argon mixed gases at atmospheric pressure using a two-dimensional fluid model.The model takes into account the primary processes of excitation and ionization,sixteen reactions of radicals with radicals in silane/hydrogen/argon discharges,so this model can adequately describe the discharge plasma.The effects of very high frequency(VHF)excitation on the electron density in such discharges are analyzed.The simulation results show that the electron density does not linearly vary with the excitation frequency within from 90150 MHz.he maximum value occurs at an appropriate excitation frequency i.e.the transition frequency.Increasof the excitation frequency would effectively increase the electron density before the transition frequency,but decreases the density afterwards.is.Moreover,the densities of involved particle species,including H2+,H,Ar*,Ar+,SiH3+,SiH3,SiH3,SiH2are closely interrelated.展开更多
The problem of controlling a single-input-single-output plant without prior knowledge of high frequency gain sign is addressed by using the model reference robust control approach.A switching method is proposed based ...The problem of controlling a single-input-single-output plant without prior knowledge of high frequency gain sign is addressed by using the model reference robust control approach.A switching method is proposed based on a monitoring function so that after a finite number of swi- tchings the tracking error converges to zero exponentially.Furthermore,it is shown that if some initial states of the closed-loop system are zero,only one switching is needed.展开更多
Statistical energy analysis (SEA) is an effective method for predicting high frequency vibro-acoustic performance of automobiles. A full vehicle SEA model is presented for interior noise reduction. It is composed of a...Statistical energy analysis (SEA) is an effective method for predicting high frequency vibro-acoustic performance of automobiles. A full vehicle SEA model is presented for interior noise reduction. It is composed of a number of subsystems based on a 3D model with all parameters for each subsystem. The excitation inputs are measured through road tests in different conditions,including inputs from the engine vibration and the sound pressure of the engine bay. The accuracy in high frequency of SEA model is validated,by comparing the analysis results with the testing pressure level data at driver's right ear. Noise contribution and sensitivity of key subsystems are analyzed. Finally,the effectiveness of noise reduction is verified. Based on the SEA model,an approach combining test and simulation is proposed for the noise vibration and harshness (NVH) design in vehicle development. It contains building the SEA model,testing for subsystem parameter identification,validating the simulation model,identifying subsystem power inputs,analyzing the design sensitivity. An example is given to demonstrate the interior noise reduction in high frequency.展开更多
For the complex and large targets like naval vessels,the computation for their RCS usu- ally uses high-frequency approach.Presenting the geometry modeling and the computation principle on naval vessel's RCS,this p...For the complex and large targets like naval vessels,the computation for their RCS usu- ally uses high-frequency approach.Presenting the geometry modeling and the computation principle on naval vessel's RCS,this paper puts the emphasis on the key techniques of computing the naval vessel's RCS based on high-frequency approach with the analysis on mast's effect to the total RCS as the example.展开更多
The principle and method of both radar target imaging and velocity measurement simultaneously based on step frequency waveforms is presented. Velocity compensation is necessary in order to obtain the good High resolut...The principle and method of both radar target imaging and velocity measurement simultaneously based on step frequency waveforms is presented. Velocity compensation is necessary in order to obtain the good High resolution range profile since this waveform is greatly sensitive to the Doppler shift. The velocity measurement performance of the four styles is analyzed with two pulse trains consisted of positive and negative step frequency waveforms. The velocity of targets can be estimated first coarsely by using the pulse trains with positive-positive step frequency combination, and then fine by positive-negative combination. Simulation results indicate that the method can accomplish the accurate estimation of the velocity with efficient computation and good anti-noise performance and obtain the good HRRP simultaneously.展开更多
In order to grasp the dynamic behaviors of 4-UPS-UPU high-speed spatial parallel mechanism, the stress of driving limbs and natural frequencies of parallel mechanism were investigated. Based on flexible multi-body dyn...In order to grasp the dynamic behaviors of 4-UPS-UPU high-speed spatial parallel mechanism, the stress of driving limbs and natural frequencies of parallel mechanism were investigated. Based on flexible multi-body dynamics theory, the dynamics model of 4-UPS-UPU high-speed spatial parallel mechanism without considering geometric nonlinearity was derived. The stress of driving limbs and natural frequencies of 4-UPS-UPU parallel mechanism with specific parameters were analyzed. The relationship between the basic parameters of parallel mechanism and its dynamic behaviors, such as stress of driving limbs and natural frequencies of parallel mechanism, were discussed. The numerical simulation results show that the stress and natural frequencies are relatively sensitive to the section parameters of driving limbs, the characteristic parameters of material on driving limbs, and the mass of moving platform. The researches can provide important theoretical base of the analysis of dynamic behaviors and optimal design for high-speed spatial parallel mechanism.展开更多
基金supported by the Program of the Aeronautical Science Foundation of China(2013ZC15003)
文摘This paper investigates the jamming sensing performance of the simultaneous transmit and receive based cognitive anti-jamming(SCAJ) receiver impaired by phase noise in local oscillators(LO) over fading channels. Firstly, energy detection(ED)based on the jamming to noise ratio(JNR) of the high frequency bands SCAJ receiver with phase noise under different channels is analyzed. Then, the probabilities of jamming detection and false alarm in closed-form for the SCAJ receiver are derived. Finally,the modified Bayesian Cramer-Rao bound(BCRB) of jamming sensing for the SCAJ receiver is presented. Simulation results show that the performance degradation of the SCAJ system due to phase noise is more severe than that due to the channel fading in the circumstances where the signal bandwidth(BW) is kept a constant. Moreover, the signal BW has an effect on the phase noise in LO, and the jamming detection probability of the wideband SCAJ receiver with lower phase noise outperforms that of the narrowband receiver using the same center frequency. Furthermore,an accurate phase noise estimation and compensation scheme can improve the jamming detection capability of the SCAJ receiver in high frequency bands and approach to the upper bound.
基金supported by the National Natural Science Foundation of China(61871146)the Fundamental Research Funds for the Central Universities(FRFCU5710093720)。
文摘Ultrahigh resolution synthetic aperture radar(SAR)imaging for ship targets is significant in SAR imaging,but it suffers from high frequency vibration of the platform,which will induce defocus into SAR imaging results.In this paper,a novel compensation method based on the sinusoidal frequency modulation Fourier-Bessel transform(SFMFBT)is proposed,it can estimate the vibration errors,and the phase shift ambiguity can be avoided via extracting the time frequency ridge consequently.By constructing the corresponding compensation function and combined with the inverse SAR(ISAR)technique,well-focused imaging results can be obtained.The simulation imaging results of ship targets demonstrate the validity of the proposed approach.
文摘In the wireless guidance system, the signals that receiver received has obvious Doppler shift for the high dynamic characteristic of the carrier. A new solution of carrier frequency tracking loop with frequency modifying system is put forward. The characteristic of cross product auto frequency control and the second order loop filter in this loop are analyzed. The simulation shows that this loop can accomplish frequency tracking well in high dynamic circumstance.
基金Project supported by National High-tech Research and Development Program of China (863 Program) (2011AA05A121)
文摘The understanding of the excitation mechanism of ultra high frequency (UHF) electromagnetic waves (EW) is essential for ap- plying UHF method to partial discharge (PD) detection. Since the EW induced by PD in gas insulated switchgear (GIS) contains not only transverse electromagnetic (TEM) wave, but also high-order transverse electric (TE) and high-order transverse magnetic (TM) waves, we analyzed the proportions between the TEM wave and the high order waves, as well as the influence of the PD position on this proportion, using the finite different time domain (FDTD) method. According to the unique characteristics of the waves, they are separated only ap- proximately. It is found that the high-order mode is the main component, more than 70%, of the electric field around the enclosure of GIS, and that with the increasing distance between PD source and inner conductors, the low frequency ( below about 800 MHz) component of EW decreases, but the high frequency component (above 1 GHz) increases, meanwhile the proportion of high-order components in EW could reach 77% from 70%. It concluded that the closer the PD source to the enclosure is, the easier high order EW may be excited.
基金Project(50705022) supported by the National Natural Science Foundation of ChinaProject supported by the Program for New Century Excellent Talents in University
文摘Oxygen-free copper and pre-metalized graphite were brazed using CuNiSnP braze alloy by high frequency induction heating method. Interracial microstructures and reaction phases were analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The strength and resistance of the joints were tested. It is found that when the brazing parameters are optimized, the structures of the joints are graphite/(Cu,Ni)/Ni(s.s)+NixPy/Cu3P+Cu(s.s) (including Sn)+eutectic structures (Cu3P+Ni3P+Cu(s.s)/Cu (s.s)/Cu). When the temperature increases to 750℃ or the holding time prolongs to 300 s, the eutectie structures disappear and the amount of Cu3P increases. The maximum shear strength of the joints is 5.2 MPa, which fracture at the interface of graphite and metallization. The resistance of the joints is no more than 5 mΩ.
文摘The semiclassical transport equations are used to study the high frequency performance of AlGaAs / GaAs HBTs. Electron velocity overshoot effect and its influence on the cut off frequency characteristics of AlGaAs / GaAs HBTs with different collector design parameters are analyzed and discussed.
基金the National Natural Science Foundation of China for financially supporting this research through project No.51005027
文摘An electromagnetic coupling mathematical model is established by finite element method and is verified by the contrastive experiments of copper matrix Ni-TiN cylindrical coating electrode,copper electrode and Cu50 W electrode.The wear mechanism of Ni-TiN/Cu composite electrode in the case of high-frequency pulse current is studied,and the influence of the fluctuation frequency of discharge current on electrode wear in micro-EDM is found out.Compared with the electrode made from homogeneous material,the high frequency electromagnetic properties of Ni-TiN composite layer can be used effectively to inhibit the effect of high frequency pulse on the electrode and improve the distribution trend of current density.
基金Project supported by Liaoning Provincial Natural Science Foundation of China (201202037).
文摘To improve the microcrystalline silicon thin film deposition in quality and to increase its microcrystalline silicon content,we numerically investigated the characteristics of homogeneous discharges in hydrogen diluted silane and argon mixed gases at atmospheric pressure using a two-dimensional fluid model.The model takes into account the primary processes of excitation and ionization,sixteen reactions of radicals with radicals in silane/hydrogen/argon discharges,so this model can adequately describe the discharge plasma.The effects of very high frequency(VHF)excitation on the electron density in such discharges are analyzed.The simulation results show that the electron density does not linearly vary with the excitation frequency within from 90150 MHz.he maximum value occurs at an appropriate excitation frequency i.e.the transition frequency.Increasof the excitation frequency would effectively increase the electron density before the transition frequency,but decreases the density afterwards.is.Moreover,the densities of involved particle species,including H2+,H,Ar*,Ar+,SiH3+,SiH3,SiH3,SiH2are closely interrelated.
基金Supported by National Natural Science Foundation of P.R.China(60174001)National Natural Science Foundation of Beijing(4022007)
文摘The problem of controlling a single-input-single-output plant without prior knowledge of high frequency gain sign is addressed by using the model reference robust control approach.A switching method is proposed based on a monitoring function so that after a finite number of swi- tchings the tracking error converges to zero exponentially.Furthermore,it is shown that if some initial states of the closed-loop system are zero,only one switching is needed.
基金Sponsored by the Key Project of the Development of Science and Technology of Jilin Province (20040332-1)the National"863"Project(2006AA110102-3)
文摘Statistical energy analysis (SEA) is an effective method for predicting high frequency vibro-acoustic performance of automobiles. A full vehicle SEA model is presented for interior noise reduction. It is composed of a number of subsystems based on a 3D model with all parameters for each subsystem. The excitation inputs are measured through road tests in different conditions,including inputs from the engine vibration and the sound pressure of the engine bay. The accuracy in high frequency of SEA model is validated,by comparing the analysis results with the testing pressure level data at driver's right ear. Noise contribution and sensitivity of key subsystems are analyzed. Finally,the effectiveness of noise reduction is verified. Based on the SEA model,an approach combining test and simulation is proposed for the noise vibration and harshness (NVH) design in vehicle development. It contains building the SEA model,testing for subsystem parameter identification,validating the simulation model,identifying subsystem power inputs,analyzing the design sensitivity. An example is given to demonstrate the interior noise reduction in high frequency.
文摘For the complex and large targets like naval vessels,the computation for their RCS usu- ally uses high-frequency approach.Presenting the geometry modeling and the computation principle on naval vessel's RCS,this paper puts the emphasis on the key techniques of computing the naval vessel's RCS based on high-frequency approach with the analysis on mast's effect to the total RCS as the example.
文摘The principle and method of both radar target imaging and velocity measurement simultaneously based on step frequency waveforms is presented. Velocity compensation is necessary in order to obtain the good High resolution range profile since this waveform is greatly sensitive to the Doppler shift. The velocity measurement performance of the four styles is analyzed with two pulse trains consisted of positive and negative step frequency waveforms. The velocity of targets can be estimated first coarsely by using the pulse trains with positive-positive step frequency combination, and then fine by positive-negative combination. Simulation results indicate that the method can accomplish the accurate estimation of the velocity with efficient computation and good anti-noise performance and obtain the good HRRP simultaneously.
基金Project(51005138) supported by the National Natural Science Foundation of ChinaProject(BS2012ZZ008) supported by Shandong Young Scientists Award Fund,China+2 种基金Project(J09LD54) supported by the Natural Science Foundation of Shandong Education Department of ChinaProject(2011KYJQ102) supported by the Science Foundation of Shandong University of Science and Technology,ChinaProject(HGDML-1104) supported by Jiangsu Key Laboratory of Digital Manufacturing Technology,China
文摘In order to grasp the dynamic behaviors of 4-UPS-UPU high-speed spatial parallel mechanism, the stress of driving limbs and natural frequencies of parallel mechanism were investigated. Based on flexible multi-body dynamics theory, the dynamics model of 4-UPS-UPU high-speed spatial parallel mechanism without considering geometric nonlinearity was derived. The stress of driving limbs and natural frequencies of 4-UPS-UPU parallel mechanism with specific parameters were analyzed. The relationship between the basic parameters of parallel mechanism and its dynamic behaviors, such as stress of driving limbs and natural frequencies of parallel mechanism, were discussed. The numerical simulation results show that the stress and natural frequencies are relatively sensitive to the section parameters of driving limbs, the characteristic parameters of material on driving limbs, and the mass of moving platform. The researches can provide important theoretical base of the analysis of dynamic behaviors and optimal design for high-speed spatial parallel mechanism.