Al2O3 ceramic powder was applied to modify the large pores defects on the surface of the porous metal Ti support,in situ oxidation method was a convenient method to prepare defect free ceramic/Ti composite membranes o...Al2O3 ceramic powder was applied to modify the large pores defects on the surface of the porous metal Ti support,in situ oxidation method was a convenient method to prepare defect free ceramic/Ti composite membranes on this basis.In situ oxidation conditions experimental results show that the best condition for preparing the TiO2-Al2O3/Ti composite membrane is under 800°C for 2 h,and the microstructure and pore sizes of the TiO2-Al2O3/Ti composite membranes are affected obviously.The thickness and composition of the TiO2/Ti composite membranes are determined by SEM and XRD completely.The pore size distribution of the composite membrane is measured by bubble pressure method,the most probable aperture is about 3.12μm,while the average pore size of defect free TiO2-Al2O3/Ti is about 3.23μm.After ultrasonic treatment,the slight weight change of membranes reveals no observable change,which indicates that TiO2-Al2O3/Ti composite membranes maintain a good stability.展开更多
Magnetic Fe3 O4@Cu/Ce microspheres were successfully prepared by one-step solvothermal approach and further utilized to remediate toxic arsenic(As(Ⅲ)) pollution. The effects of Cu/Ce elements co-doping on the crystal...Magnetic Fe3 O4@Cu/Ce microspheres were successfully prepared by one-step solvothermal approach and further utilized to remediate toxic arsenic(As(Ⅲ)) pollution. The effects of Cu/Ce elements co-doping on the crystal structure, catalytic oxidation and adsorption behaviors of magnetic microspheres were researched systematically. The results showed that with the aid of Cu/Ce elements, the grain size reduced, lattice defects increased, and the oxygen vacancies and surface hydroxyl groups were improved. Therefore, Cu/Ce elements endowed magnetic Fe3 O4@Cu/Ce microspheres with excellent As(III) removal performance, whose maximum adsorption capacity reached 139.19 mg/g. The adsorption mechanism mainly involved catalytic oxidant co-adsorption. This research developed a feasible strategy for the preparation of high efficiency magnetic adsorbent to enhance the removal of As(Ⅲ).展开更多
Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) ...Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS) were employed to characterize the morphology and composition of the films fabricated in the electrolytes with and without addition of Si C nanoparticles. Results show that Si C particles can be successfully incorporated into the oxide film during the anodizing process and preferentially concentrate within internal cavities and micro-cracks. The ball-on-disk sliding tests indicate that Si C-containing oxide films register much lower wear rate than the oxide films without Si C under dry sliding condition. Si C particles are likely to melt and then are oxidized by frictional heat during sliding tests. Potentiodynamic polarization behavior reveals that the anodized alloy with Si C nanoparticles results in a reduction in passive current density to about 1.54×10-8 A/cm2, which is more than two times lower than that of the Ti O2 film(3.73×10-8 A/cm2). The synthesized composite film has good anti-wear and anti-corrosion properties and the growth mechanism of nanocomposite film is also discussed.展开更多
基金Projects(212006065,21666018)supported by the National Natural Science Foundation of China
文摘Al2O3 ceramic powder was applied to modify the large pores defects on the surface of the porous metal Ti support,in situ oxidation method was a convenient method to prepare defect free ceramic/Ti composite membranes on this basis.In situ oxidation conditions experimental results show that the best condition for preparing the TiO2-Al2O3/Ti composite membrane is under 800°C for 2 h,and the microstructure and pore sizes of the TiO2-Al2O3/Ti composite membranes are affected obviously.The thickness and composition of the TiO2/Ti composite membranes are determined by SEM and XRD completely.The pore size distribution of the composite membrane is measured by bubble pressure method,the most probable aperture is about 3.12μm,while the average pore size of defect free TiO2-Al2O3/Ti is about 3.23μm.After ultrasonic treatment,the slight weight change of membranes reveals no observable change,which indicates that TiO2-Al2O3/Ti composite membranes maintain a good stability.
基金Project(2018YFC1802204)supported by the National Key R&D Program of ChinaProject(51634010)supported by the Key Project of National Natural Science Foundation of ChinaProject(2018SK2026)supported by the Key R&D Program of Hunan Province,China。
文摘Magnetic Fe3 O4@Cu/Ce microspheres were successfully prepared by one-step solvothermal approach and further utilized to remediate toxic arsenic(As(Ⅲ)) pollution. The effects of Cu/Ce elements co-doping on the crystal structure, catalytic oxidation and adsorption behaviors of magnetic microspheres were researched systematically. The results showed that with the aid of Cu/Ce elements, the grain size reduced, lattice defects increased, and the oxygen vacancies and surface hydroxyl groups were improved. Therefore, Cu/Ce elements endowed magnetic Fe3 O4@Cu/Ce microspheres with excellent As(III) removal performance, whose maximum adsorption capacity reached 139.19 mg/g. The adsorption mechanism mainly involved catalytic oxidant co-adsorption. This research developed a feasible strategy for the preparation of high efficiency magnetic adsorbent to enhance the removal of As(Ⅲ).
基金Project(51271012)supported by the National Natural Science Foundation of China
文摘Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS) were employed to characterize the morphology and composition of the films fabricated in the electrolytes with and without addition of Si C nanoparticles. Results show that Si C particles can be successfully incorporated into the oxide film during the anodizing process and preferentially concentrate within internal cavities and micro-cracks. The ball-on-disk sliding tests indicate that Si C-containing oxide films register much lower wear rate than the oxide films without Si C under dry sliding condition. Si C particles are likely to melt and then are oxidized by frictional heat during sliding tests. Potentiodynamic polarization behavior reveals that the anodized alloy with Si C nanoparticles results in a reduction in passive current density to about 1.54×10-8 A/cm2, which is more than two times lower than that of the Ti O2 film(3.73×10-8 A/cm2). The synthesized composite film has good anti-wear and anti-corrosion properties and the growth mechanism of nanocomposite film is also discussed.