There are some inherent defects for the polyolefin based lithium battery separator,such as,poor thermal stability,poor electrolyte wettability and low porosity,which limit the development of lithium battery.An importa...There are some inherent defects for the polyolefin based lithium battery separator,such as,poor thermal stability,poor electrolyte wettability and low porosity,which limit the development of lithium battery.An important way to improve the performance of lithium battery is to improve the separator.Here,three novel separators combined with metal-organic framework materials(MOFs)and carbon materials were prepared by using the in situ growth method and the adsorption combination method simultaneously.The result showed that compared with the polypropylene separator,the porosity and electrolyte wettability were significantly improved in view of these novel polypropylene separators combined with MOFs and carbon materials.Meanwhile,the electrochemical performance of lithium battery equipped with the polypropylene separator combined with MOFs materials and carbon materials was also improved.The result showed that lithium batteries equipped with polypropylene separator combined with MOFs and carbon materials had higher capacity in the first charge and discharge cycle and better electrochemical kinetic reaction processes.展开更多
Continued growth in energy demand and increased environmental pollution constitute major challenges that need to be addressed urgently.The development and utilization of renewable,sustainable,and clean energy sources,...Continued growth in energy demand and increased environmental pollution constitute major challenges that need to be addressed urgently.The development and utilization of renewable,sustainable,and clean energy sources,such as wind and solar,are crucial.However,the instability of these intermittent energy sources makes the need for energy storage systems increasingly urgent.Aqueous zinc-ion batteries(AZIBs)have received widespread attention due to their unique advantages,such as high energy density,cost-effectiveness,environmental friendliness,and safety.However,AZIBs face significant challenges,mainly the formation of zinc dendrites that seriously affect the stability and lifetime of the batteries,leading to battery failure.Therefore,reducing the formation of zinc dendrites is crucial for improving the performance of AZIBs.This review systematically and comprehensively comprehends the current strategies and advances in inhibiting the formation of zinc dendrites.By comprehensively analyzing the latest developments in zinc anode,electrolyte,separator design and modification,as well as other novel mechanisms,it provides researchers with a thorough understanding to guide future research and advance the development of AZIBs.展开更多
In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperatur...In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperature swing can be equivalent to reducing maximum instantaneous phase copper loss in this paper.First,a two-level optimization aiming at minimizing maximum instantaneous phase copper loss at each electrical angle is proposed.Then,the optimization is transformed to a singlelevel optimization by introducing the auxiliary variable for easy solving.Considering that singleobjective optimization trades a great total copper loss for a small reduction of maximum phase copper loss,the optimization considering both instantaneous total copper loss and maximum phase copper loss is proposed,which has the same performance of temperature swing reduction but with lower total loss.In this way,the proposed control scheme can reduce maximum junction temperature by 11%.Both simulation and experimental results are presented to prove the effectiveness and superiority of the proposed control scheme for low-frequency temperature swing reduction.展开更多
Stemming from the high costs and environmental pollution associated with the use of sodium sulfide in the separation and extraction processes of molybdenum bismuth ore,calcium hypochlorite was introduced as a substitu...Stemming from the high costs and environmental pollution associated with the use of sodium sulfide in the separation and extraction processes of molybdenum bismuth ore,calcium hypochlorite was introduced as a substitute to facilitate the cleaner production of low-grade molybdenum bismuth ore in this study.The effects of calcium hypochlorite on molybdenite,bismuthinite,and pyrite were investigated through micro-flotation,flotation kinetics,batch flotation,Fourier transform infrared(FTIR)spectra,scanning electron microscopy energy dispersion spectra(SEM-EDS),and inductively coupled plasma-optical emission spectra(ICP-OES).The flotation tests results showed that calcium hypochlorite could selectively depress bismuthinite and pyrite.In comparison to sodium sulfide,calcium hypochlorite not only improved the flotation indicators for molybdenum and bismuth concentrates but also reduced the dosage of flotation reagents.Moreover,the chemical oxygen demand(COD)of tailings wastewater significantly decreased when using calcium hypochlorite as a depressant.Mechanism research revealed that the use of calcium hypochlorite as a depressant led to BiOCl precipitation on bismuthinite,which hindered the attachment of the collector.In summary,calcium hypochlorite serves as a more efficient and environmentally friendly depressant compared to sodium sulfide in the industrial production processes of low-grade molybdenum bismuth ore.展开更多
Polydimethylsiloxane(PDMS)is considered a low surface energy material widely used in(super)hydrophobic modification.In this paper,the high hydrophobic melamine sponges(MS)were modified with commercial aminopropyl func...Polydimethylsiloxane(PDMS)is considered a low surface energy material widely used in(super)hydrophobic modification.In this paper,the high hydrophobic melamine sponges(MS)were modified with commercial aminopropyl functionalized polydimethylsiloxane(NH_(2)-PDMS)with different molecular mass.The chemical composition,surface morphology,and wettability of the NH_(2)-PDMS-modified MS were investigated by X-ray photoelectron spectroscopy(XPS),attenuated total reflection Fourier transform infrared spectroscopy(ATR-FTIR)and contact angle test.Owing to the porous structure and high hydrophobicity,NH_(2)-PDMS-modified MS possesses remarkable absorption capacity(ranging from 46 to 155 times their own mass).Simultaneously,it can effectively separate oil-water mixtures with high separation efficiencies exceeding 98.2%.NH_(2)-PDMS-modified MS has no obvious change after 10 cycles of oil-water separation.The results demonstrate PDMS molecular mass on surface can revise material properties and achieve high separation efficiencies in oil-water separation.展开更多
Surface pretreatment can change the surface properties of minerals,placing them in either a favorable or an unfavorable state for flotation.To solve the separation problem associated with magnesite and dolomite,surfac...Surface pretreatment can change the surface properties of minerals,placing them in either a favorable or an unfavorable state for flotation.To solve the separation problem associated with magnesite and dolomite,surface pretreatment experiments with citric acid,tartaric acid,and tannic acid(TA)on magnesite and dolomite as well as flotation experiments on pretreated samples were performed in this study.Experimental results demonstrated that when citric acid and tartaric acid are used for surface pretreatment,the separation effect of magnesite and dolomite is poor.However,when TA is used,the separation effect of magnesite and dolomite improves.SEM and BET analysis indicated that surface pretreatment with TA changes the surface morphology of the two minerals,resulting in additional concave pores on the dolomite surface,and a significant increase in pore size and specific surface area.The adsorption quantity test and contact angle measurement demonstrated that after surface pretreatment with TA,the magnesite adsorption capacity on sodium oleate(NaOL)slightly decreases and the dolomite adsorption capacity on NaOL considerably decreases.XPS detection concluded that the surface pretreatment of TA on the magnesite surface mainly relies on physical adsorption with weak adsorption ability and poor ability to act on Mg sites.The TA surface pretreatment action on the dolomite surface is mainly through chemical adsorption,and it is strongly and selectively adsorbed on the Ca site of dolomite through O.Actual ore rough selection experiments reveal that TA pretreatment successfully removes dolomite from magnesite,resulting in a high-quality magnesite concentrate characterized by a MgO grade of 45.49%and a CaO grade of 0.75%.展开更多
Micro-and nano-to millimeter-scale magnetic matrix materials have gained widespread application due to their exceptional magnetic properties and favorable cost-effectiveness.With the rapid progress in condensed matter...Micro-and nano-to millimeter-scale magnetic matrix materials have gained widespread application due to their exceptional magnetic properties and favorable cost-effectiveness.With the rapid progress in condensed matter physics,materials science,and mineral separation technologies,these materials are now poised for new opportunities in theoretical research and development.This review provides a comprehensive analysis of these matrices,encompassing their structure,size,shape,composition,properties,and multifaceted applications.These materials,primarily composed of alloys of transition state metasl such as iron(Fe),cobalt(Co),titanium(Ti),and nickel(Ni),exhibit unique attributes like high magnetization rates,low eleastic modulus,and high saturation magnetic field strengths.Furthermore,the studies also delve into the complex mechanical interactions involved in the separation of magnetic particles using magnetic separator matrices,including magnetic,gravitational,centrifugal,and van der Waals forces.The review outlines how size and shape effects influence the magnetic behavior of matrices,offering new perspectives for innovative applications of magnetic matrices in various domains of materials science and magnetic separation.展开更多
The lime-Cu^(2+)-xanthate process is commonly used for the flotation separation of sphalerite from pyrite.In this process,lime is added to the pulp to inhibit the floatability of pyrite.However,the excessive use of li...The lime-Cu^(2+)-xanthate process is commonly used for the flotation separation of sphalerite from pyrite.In this process,lime is added to the pulp to inhibit the floatability of pyrite.However,the excessive use of lime can result in pipeline blockage and inadequate recovery of associated precious metals.Therefore,it is necessary to develop new flotation process that minimizes or eliminates the use of lime.In this paper,a novel Fe^(3+)-Cu^(2+)-butyl xanthate process was developed as an alternative to lime for separating of sphalerite from pyrite.The flotation results indicated that with the artificially-mixed minerals,the flotation recovery of pyrite was lower than 16%and that of sphalerite was higher than 47%at pH 5.0−10.0.The zeta potential measurements revealed that ferric ion preferred to adsorb on pyrite,and copper ion displaced with zinc ion from the lattice at the interface of sphalerite.The wettability analyses indicated that the hydrophobicity of sphalerite surface increased apparently after being treated with Fe^(3+)-Cu^(2+)-BX,while the hydrophobicity of pyrite surface remained nearly unchanged.With XPS analysis,Cu-S bond and hydrophilic ferric hydroxide were detected separately on the surface of sphalerite and pyrite after conditioning with Fe^(3+)-Cu^(2+)-BX,which facilitated the flotation separation of sphalerite from pyrite with butyl xanthate collector.展开更多
In the hydraulic transporting process of cutter-suction mining natural gas hydrate, when the temperature-pressure equilibrium of gas hydrate is broken, gas hydrates dissociate into gas. As a result, solid-liquid two-p...In the hydraulic transporting process of cutter-suction mining natural gas hydrate, when the temperature-pressure equilibrium of gas hydrate is broken, gas hydrates dissociate into gas. As a result, solid-liquid two-phase flow(hydrate and water) transforms into gas-solid-liquid three-phase flow(methane, hydrate and water) inside the pipeline. The Euler model and CFD-PBM model were used to simulate gas-solid-liquid three-phase flow. Numerical simulation results show that the gas and solid phase gradually accumulate to the center of the pipe. Flow velocity decreases from center to boundary of the pipe along the radial direction. Comparison of numerical simulation results of two models reveals that the flow state simulated by CFD-PBM model is more uniform than that simulated by Euler model, and the main behavior of the bubble is small bubbles coalescence to large one. Comparison of numerical simulation and experimental investigation shows that the values of flow velocity and gas fraction in CFD-PBM model agree with experimental data better than those in Euler model. The proposed PBM model provides a more accurate and effective way to estimate three-phase flow state of transporting gas hydrate within the submarine pipeline.展开更多
The present work is concerned with the solution of a problem on thermoelastic interactions in a functional graded material due to thermal shock in the context of the fractional order three-phase lag model. The governi...The present work is concerned with the solution of a problem on thermoelastic interactions in a functional graded material due to thermal shock in the context of the fractional order three-phase lag model. The governing equations of fractional order generalized thermoelasticity with three-phase lag model for functionally graded materials(FGM)(i.e., material with spatially varying material properties) are established. The analytical solution in the transform domain is obtained by using the eigenvalue approach.The inversion of Laplace transform is done numerically. The graphical results indicate that the fractional parameter has significant effects on all the physical quantities. Thus, we can consider the theory of fractional order generalized thermoelasticity an improvement on studying elastic materials.展开更多
A new technique of combining accretion by cyclone separator and scattertube for tailings dams was developed according to laboratory experiment, model experiment and spot experiment technology. Three tailings dams were...A new technique of combining accretion by cyclone separator and scattertube for tailings dams was developed according to laboratory experiment, model experiment and spot experiment technology. Three tailings dams were successfully constructed by the new technique. The results of engineering geological exploration, static and dynamic test and stability analysis on Baizhishan tailings dams prove that the new technique improves structure and stability of the dams and working conditions compared with the traditional technique. The thin layers of fine-grained soils are greatly reduced, fine tailings sand is solid to make the dam stable and seepage conditions are well improved; the immersing line of the dam descends. In addition, the stability and liquefaction resistance of tailings dams are strengthened remarkably. The interior stress is compressive stress, stress level of every element is less than 1.0 and safety coefficient of every element is greater than 1.0. The safety coefficient against liquefaction of every element of tailings dams is greater than 1.5 according to the analysis of seismic response by finite element method.展开更多
Sliding mode control(SMC) becomes a common tool in designing robust nonlinear control systems, due to its inherent characteristics such as insensitivity to system uncertainties and fast dynamic response.Two modes are ...Sliding mode control(SMC) becomes a common tool in designing robust nonlinear control systems, due to its inherent characteristics such as insensitivity to system uncertainties and fast dynamic response.Two modes are involved in the SMC operation, namely reaching mode and sliding mode.In the reaching mode, the system state is forced to reach the sliding surface in a finite time.The major drawback of the SMC approach is the occurrence of chattering in the sliding mode, which is undesirable in most applications.Generally, the trade-off between chattering reduction and fast reaching time must be considered in the conventional SMC design.This paper proposes SMC design with a novel reaching law called the exponential rate reaching law(ERRL) to reduce chattering, and the control structure of the converter is designed based on the multiinput SMC that is applied to a three-phase AC/DC power converter.The simulation and experimental results show the effectiveness of the proposed technique.展开更多
Sand/dust test is one of the key projects to examine the environmental adaptability of ordnance equipment.In order to decrease the abrasion of test facility caused by the sand/dust particles,the particles contained in...Sand/dust test is one of the key projects to examine the environmental adaptability of ordnance equipment.In order to decrease the abrasion of test facility caused by the sand/dust particles,the particles contained in the airflowneed to be reclaimed effectively.Amathematical model of Useparator is established.The flowfield and the trajectories of particles inside the separator are obtained using a numerical simulation method,and the separation efficiency and pressure drop of separator with different rows of separate components are also obtained at various flowvelocities.The simulation results indicate that the efficiency of U inertia separator is affected by the flowvelocity evidently,and a reasonably designed separator can meet the requirement of the separation efficiency in particular situation.The results can be use as reference for the design and test of sand/dust separate systems.展开更多
In this article,vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers subjected to blast load are studied.Higher-order ES-MITC3 element based on higher-order...In this article,vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers subjected to blast load are studied.Higher-order ES-MITC3 element based on higher-order shear deformation theory(HSDT)to achieve the governing equations.The sandwich plates with the ultra-light feature of the auxetic honeycomb core layer(negative Poisson’s ratio)and reinforced by two laminated three-phase skin layers.The obtained results in our work are compared with other previously published to confirm accuracy and reliability.In addition,the effects of parameters such as geometrical and material parameters on the vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers are fully investigated.展开更多
Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepare...Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepared using different catalyst amounts(denoted as F23-CLF-30-D). The involved curing and phase separation processes were monitored using Fourier-transform infrared spectroscopy, differential scanning calorimetry, a haze meter and a rheometer. Curing rate constant and activation energy were calculated using a theoretical model and numerical method, respectively. Results revealed that owing to its co-continuous micro-phase separation structure, the F23-CLF-30-D3 semi-IPN exhibited considerably higher tensile strength and elongation at break than pure fluororubber F2314 and the F23-CLF-30-D0 semi-IPN because the phase separation and curing rates matched in the initial stage of curing.An arc Brazilian test revealed that F23-CLF-30-D-based composites used as mock materials for PBXs exhibited excellent mechanical performance and storage stability. Thus, the matched curing and phase separation rates play a crucial role during the fabrication of high-performance semi-IPNs;these factors can be feasibly controlled using an appropriate catalyst amount.展开更多
Separation and recognition of radar signals is the key function of modern radar reconnaissance,which is of great sig-nificance for electronic countermeasures and anti-countermea-sures.In order to improve the ability o...Separation and recognition of radar signals is the key function of modern radar reconnaissance,which is of great sig-nificance for electronic countermeasures and anti-countermea-sures.In order to improve the ability of separating mixed signals in complex electromagnetic environment,a blind source separa-tion algorithm based on degree of cyclostationarity(DCS)crite-rion is constructed in this paper.Firstly,the DCS criterion is con-structed by using the cyclic spectrum theory.Then the algo-rithm flow of blind source separation is designed based on DCS criterion.At the same time,Givens matrix is constructed to make the blind source separation algorithm suitable for multiple sig-nals with different cyclostationary frequencies.The feasibility of this method is further proved.The theoretical and simulation results show that the algorithm can effectively separate and re-cognize common multi-radar signals.展开更多
This study developed a direct reduction route to smelt refractory high-phosphorus iron ores by using hydrogen rich gas.The effects of temperature,gas composition,and gangue on the reduction behavior of iron ore pellet...This study developed a direct reduction route to smelt refractory high-phosphorus iron ores by using hydrogen rich gas.The effects of temperature,gas composition,and gangue on the reduction behavior of iron ore pellets were investigated.Additionally,the migration behavior of phosphorus throughout the reduction-smelting process was examined.The apparent activation energy of the reduction process increased from 64.2 to 194.2 kJ/mol.Increasing the basicity from 0.5 to 0.9 increased the metallization rate from 85.9%to 89.2%.During the reduction process,phosphorus remained in the gangue phase.Carbon deposition and phosphorus removal behaviors of the pellets were investigated and correlated with the gas composition,temperature,pressure,metallization rate,and basicity.Increasing the FeO and CaO contents led to an increase in the liquidus temperature.A high metallization rate of the pellets reduced the phosphorus removal rate but increased the carbon content of the final iron product.Increasing basicity restricted the migration of phosphorus and improved the rate of phosphorus removal.The optimum dephosphorization parameters were separation temperature of 1823 K,basicity of 2.0,and metallization rate of 82.3%.This study presents a high-efficiency and low carbon method for smelting high-phosphorus iron ores.展开更多
基金2023 undergraduate Innovation and Entrepreneurship Project of Yichun University(S202310417015)。
文摘There are some inherent defects for the polyolefin based lithium battery separator,such as,poor thermal stability,poor electrolyte wettability and low porosity,which limit the development of lithium battery.An important way to improve the performance of lithium battery is to improve the separator.Here,three novel separators combined with metal-organic framework materials(MOFs)and carbon materials were prepared by using the in situ growth method and the adsorption combination method simultaneously.The result showed that compared with the polypropylene separator,the porosity and electrolyte wettability were significantly improved in view of these novel polypropylene separators combined with MOFs and carbon materials.Meanwhile,the electrochemical performance of lithium battery equipped with the polypropylene separator combined with MOFs materials and carbon materials was also improved.The result showed that lithium batteries equipped with polypropylene separator combined with MOFs and carbon materials had higher capacity in the first charge and discharge cycle and better electrochemical kinetic reaction processes.
文摘Continued growth in energy demand and increased environmental pollution constitute major challenges that need to be addressed urgently.The development and utilization of renewable,sustainable,and clean energy sources,such as wind and solar,are crucial.However,the instability of these intermittent energy sources makes the need for energy storage systems increasingly urgent.Aqueous zinc-ion batteries(AZIBs)have received widespread attention due to their unique advantages,such as high energy density,cost-effectiveness,environmental friendliness,and safety.However,AZIBs face significant challenges,mainly the formation of zinc dendrites that seriously affect the stability and lifetime of the batteries,leading to battery failure.Therefore,reducing the formation of zinc dendrites is crucial for improving the performance of AZIBs.This review systematically and comprehensively comprehends the current strategies and advances in inhibiting the formation of zinc dendrites.By comprehensively analyzing the latest developments in zinc anode,electrolyte,separator design and modification,as well as other novel mechanisms,it provides researchers with a thorough understanding to guide future research and advance the development of AZIBs.
基金supported by the National Natural Science Foundation of China(No.62271109)。
文摘In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperature swing can be equivalent to reducing maximum instantaneous phase copper loss in this paper.First,a two-level optimization aiming at minimizing maximum instantaneous phase copper loss at each electrical angle is proposed.Then,the optimization is transformed to a singlelevel optimization by introducing the auxiliary variable for easy solving.Considering that singleobjective optimization trades a great total copper loss for a small reduction of maximum phase copper loss,the optimization considering both instantaneous total copper loss and maximum phase copper loss is proposed,which has the same performance of temperature swing reduction but with lower total loss.In this way,the proposed control scheme can reduce maximum junction temperature by 11%.Both simulation and experimental results are presented to prove the effectiveness and superiority of the proposed control scheme for low-frequency temperature swing reduction.
基金Projects(2022YFC2904504-4,2019YFC0408300)supported by the National Key R&D Program of ChinaProject(HB202302)supported by the Open Foundation of State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control,China+1 种基金Project(51634009)supported by the National Natural Science Foundation of ChinaProject(B14034)supported by the National“111”Project,China。
文摘Stemming from the high costs and environmental pollution associated with the use of sodium sulfide in the separation and extraction processes of molybdenum bismuth ore,calcium hypochlorite was introduced as a substitute to facilitate the cleaner production of low-grade molybdenum bismuth ore in this study.The effects of calcium hypochlorite on molybdenite,bismuthinite,and pyrite were investigated through micro-flotation,flotation kinetics,batch flotation,Fourier transform infrared(FTIR)spectra,scanning electron microscopy energy dispersion spectra(SEM-EDS),and inductively coupled plasma-optical emission spectra(ICP-OES).The flotation tests results showed that calcium hypochlorite could selectively depress bismuthinite and pyrite.In comparison to sodium sulfide,calcium hypochlorite not only improved the flotation indicators for molybdenum and bismuth concentrates but also reduced the dosage of flotation reagents.Moreover,the chemical oxygen demand(COD)of tailings wastewater significantly decreased when using calcium hypochlorite as a depressant.Mechanism research revealed that the use of calcium hypochlorite as a depressant led to BiOCl precipitation on bismuthinite,which hindered the attachment of the collector.In summary,calcium hypochlorite serves as a more efficient and environmentally friendly depressant compared to sodium sulfide in the industrial production processes of low-grade molybdenum bismuth ore.
基金Project(2025JJ70532)supported by the Natural Science Foundation of Hunan Province,ChinaProjects(21862009,21563016)supported by the National Natural Science Foundation of ChinaProject(2022GX020)supported by the Taian Science and Technology Innovation Development Project,China。
文摘Polydimethylsiloxane(PDMS)is considered a low surface energy material widely used in(super)hydrophobic modification.In this paper,the high hydrophobic melamine sponges(MS)were modified with commercial aminopropyl functionalized polydimethylsiloxane(NH_(2)-PDMS)with different molecular mass.The chemical composition,surface morphology,and wettability of the NH_(2)-PDMS-modified MS were investigated by X-ray photoelectron spectroscopy(XPS),attenuated total reflection Fourier transform infrared spectroscopy(ATR-FTIR)and contact angle test.Owing to the porous structure and high hydrophobicity,NH_(2)-PDMS-modified MS possesses remarkable absorption capacity(ranging from 46 to 155 times their own mass).Simultaneously,it can effectively separate oil-water mixtures with high separation efficiencies exceeding 98.2%.NH_(2)-PDMS-modified MS has no obvious change after 10 cycles of oil-water separation.The results demonstrate PDMS molecular mass on surface can revise material properties and achieve high separation efficiencies in oil-water separation.
基金Project(BGRIMM-KJSKL-2024-07) supported by the Open Foundation of State Key Laboratory of Mineral Processing,ChinaProjects(52374259,52174239) supported by the National Natural Science Foundation of China。
文摘Surface pretreatment can change the surface properties of minerals,placing them in either a favorable or an unfavorable state for flotation.To solve the separation problem associated with magnesite and dolomite,surface pretreatment experiments with citric acid,tartaric acid,and tannic acid(TA)on magnesite and dolomite as well as flotation experiments on pretreated samples were performed in this study.Experimental results demonstrated that when citric acid and tartaric acid are used for surface pretreatment,the separation effect of magnesite and dolomite is poor.However,when TA is used,the separation effect of magnesite and dolomite improves.SEM and BET analysis indicated that surface pretreatment with TA changes the surface morphology of the two minerals,resulting in additional concave pores on the dolomite surface,and a significant increase in pore size and specific surface area.The adsorption quantity test and contact angle measurement demonstrated that after surface pretreatment with TA,the magnesite adsorption capacity on sodium oleate(NaOL)slightly decreases and the dolomite adsorption capacity on NaOL considerably decreases.XPS detection concluded that the surface pretreatment of TA on the magnesite surface mainly relies on physical adsorption with weak adsorption ability and poor ability to act on Mg sites.The TA surface pretreatment action on the dolomite surface is mainly through chemical adsorption,and it is strongly and selectively adsorbed on the Ca site of dolomite through O.Actual ore rough selection experiments reveal that TA pretreatment successfully removes dolomite from magnesite,resulting in a high-quality magnesite concentrate characterized by a MgO grade of 45.49%and a CaO grade of 0.75%.
基金Project(52174245)supported by the National Natural Science Foundation of ChinaProject(2021J01640)supported by the Natural Science Foundation of Fujian Province,ChinaProject(BGRIMM-KJSKL2022-03)supported by Open Foundation of the State Key Laboratory of Mineral Processing,China。
文摘Micro-and nano-to millimeter-scale magnetic matrix materials have gained widespread application due to their exceptional magnetic properties and favorable cost-effectiveness.With the rapid progress in condensed matter physics,materials science,and mineral separation technologies,these materials are now poised for new opportunities in theoretical research and development.This review provides a comprehensive analysis of these matrices,encompassing their structure,size,shape,composition,properties,and multifaceted applications.These materials,primarily composed of alloys of transition state metasl such as iron(Fe),cobalt(Co),titanium(Ti),and nickel(Ni),exhibit unique attributes like high magnetization rates,low eleastic modulus,and high saturation magnetic field strengths.Furthermore,the studies also delve into the complex mechanical interactions involved in the separation of magnetic particles using magnetic separator matrices,including magnetic,gravitational,centrifugal,and van der Waals forces.The review outlines how size and shape effects influence the magnetic behavior of matrices,offering new perspectives for innovative applications of magnetic matrices in various domains of materials science and magnetic separation.
基金Project(52204363)supported by the National Natural Science Foundation of ChinaProject(2024JJ8042)supported by the Hunan Natural Science Foundation,ChinaProject(22C0220)supported by the Education Department of Hunan Province,China。
文摘The lime-Cu^(2+)-xanthate process is commonly used for the flotation separation of sphalerite from pyrite.In this process,lime is added to the pulp to inhibit the floatability of pyrite.However,the excessive use of lime can result in pipeline blockage and inadequate recovery of associated precious metals.Therefore,it is necessary to develop new flotation process that minimizes or eliminates the use of lime.In this paper,a novel Fe^(3+)-Cu^(2+)-butyl xanthate process was developed as an alternative to lime for separating of sphalerite from pyrite.The flotation results indicated that with the artificially-mixed minerals,the flotation recovery of pyrite was lower than 16%and that of sphalerite was higher than 47%at pH 5.0−10.0.The zeta potential measurements revealed that ferric ion preferred to adsorb on pyrite,and copper ion displaced with zinc ion from the lattice at the interface of sphalerite.The wettability analyses indicated that the hydrophobicity of sphalerite surface increased apparently after being treated with Fe^(3+)-Cu^(2+)-BX,while the hydrophobicity of pyrite surface remained nearly unchanged.With XPS analysis,Cu-S bond and hydrophilic ferric hydroxide were detected separately on the surface of sphalerite and pyrite after conditioning with Fe^(3+)-Cu^(2+)-BX,which facilitated the flotation separation of sphalerite from pyrite with butyl xanthate collector.
基金Project(51375498) supported by the National Natural Science Foundation of China
文摘In the hydraulic transporting process of cutter-suction mining natural gas hydrate, when the temperature-pressure equilibrium of gas hydrate is broken, gas hydrates dissociate into gas. As a result, solid-liquid two-phase flow(hydrate and water) transforms into gas-solid-liquid three-phase flow(methane, hydrate and water) inside the pipeline. The Euler model and CFD-PBM model were used to simulate gas-solid-liquid three-phase flow. Numerical simulation results show that the gas and solid phase gradually accumulate to the center of the pipe. Flow velocity decreases from center to boundary of the pipe along the radial direction. Comparison of numerical simulation results of two models reveals that the flow state simulated by CFD-PBM model is more uniform than that simulated by Euler model, and the main behavior of the bubble is small bubbles coalescence to large one. Comparison of numerical simulation and experimental investigation shows that the values of flow velocity and gas fraction in CFD-PBM model agree with experimental data better than those in Euler model. The proposed PBM model provides a more accurate and effective way to estimate three-phase flow state of transporting gas hydrate within the submarine pipeline.
文摘The present work is concerned with the solution of a problem on thermoelastic interactions in a functional graded material due to thermal shock in the context of the fractional order three-phase lag model. The governing equations of fractional order generalized thermoelasticity with three-phase lag model for functionally graded materials(FGM)(i.e., material with spatially varying material properties) are established. The analytical solution in the transform domain is obtained by using the eigenvalue approach.The inversion of Laplace transform is done numerically. The graphical results indicate that the fractional parameter has significant effects on all the physical quantities. Thus, we can consider the theory of fractional order generalized thermoelasticity an improvement on studying elastic materials.
文摘A new technique of combining accretion by cyclone separator and scattertube for tailings dams was developed according to laboratory experiment, model experiment and spot experiment technology. Three tailings dams were successfully constructed by the new technique. The results of engineering geological exploration, static and dynamic test and stability analysis on Baizhishan tailings dams prove that the new technique improves structure and stability of the dams and working conditions compared with the traditional technique. The thin layers of fine-grained soils are greatly reduced, fine tailings sand is solid to make the dam stable and seepage conditions are well improved; the immersing line of the dam descends. In addition, the stability and liquefaction resistance of tailings dams are strengthened remarkably. The interior stress is compressive stress, stress level of every element is less than 1.0 and safety coefficient of every element is greater than 1.0. The safety coefficient against liquefaction of every element of tailings dams is greater than 1.5 according to the analysis of seismic response by finite element method.
文摘Sliding mode control(SMC) becomes a common tool in designing robust nonlinear control systems, due to its inherent characteristics such as insensitivity to system uncertainties and fast dynamic response.Two modes are involved in the SMC operation, namely reaching mode and sliding mode.In the reaching mode, the system state is forced to reach the sliding surface in a finite time.The major drawback of the SMC approach is the occurrence of chattering in the sliding mode, which is undesirable in most applications.Generally, the trade-off between chattering reduction and fast reaching time must be considered in the conventional SMC design.This paper proposes SMC design with a novel reaching law called the exponential rate reaching law(ERRL) to reduce chattering, and the control structure of the converter is designed based on the multiinput SMC that is applied to a three-phase AC/DC power converter.The simulation and experimental results show the effectiveness of the proposed technique.
文摘Sand/dust test is one of the key projects to examine the environmental adaptability of ordnance equipment.In order to decrease the abrasion of test facility caused by the sand/dust particles,the particles contained in the airflowneed to be reclaimed effectively.Amathematical model of Useparator is established.The flowfield and the trajectories of particles inside the separator are obtained using a numerical simulation method,and the separation efficiency and pressure drop of separator with different rows of separate components are also obtained at various flowvelocities.The simulation results indicate that the efficiency of U inertia separator is affected by the flowvelocity evidently,and a reasonably designed separator can meet the requirement of the separation efficiency in particular situation.The results can be use as reference for the design and test of sand/dust separate systems.
文摘In this article,vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers subjected to blast load are studied.Higher-order ES-MITC3 element based on higher-order shear deformation theory(HSDT)to achieve the governing equations.The sandwich plates with the ultra-light feature of the auxetic honeycomb core layer(negative Poisson’s ratio)and reinforced by two laminated three-phase skin layers.The obtained results in our work are compared with other previously published to confirm accuracy and reliability.In addition,the effects of parameters such as geometrical and material parameters on the vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers are fully investigated.
基金supported by Wuxi HIT New Material Research Institute and China Academy of Engineering Physics。
文摘Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepared using different catalyst amounts(denoted as F23-CLF-30-D). The involved curing and phase separation processes were monitored using Fourier-transform infrared spectroscopy, differential scanning calorimetry, a haze meter and a rheometer. Curing rate constant and activation energy were calculated using a theoretical model and numerical method, respectively. Results revealed that owing to its co-continuous micro-phase separation structure, the F23-CLF-30-D3 semi-IPN exhibited considerably higher tensile strength and elongation at break than pure fluororubber F2314 and the F23-CLF-30-D0 semi-IPN because the phase separation and curing rates matched in the initial stage of curing.An arc Brazilian test revealed that F23-CLF-30-D-based composites used as mock materials for PBXs exhibited excellent mechanical performance and storage stability. Thus, the matched curing and phase separation rates play a crucial role during the fabrication of high-performance semi-IPNs;these factors can be feasibly controlled using an appropriate catalyst amount.
基金supported by the National Natural Science Foundation of China(61502522).
文摘Separation and recognition of radar signals is the key function of modern radar reconnaissance,which is of great sig-nificance for electronic countermeasures and anti-countermea-sures.In order to improve the ability of separating mixed signals in complex electromagnetic environment,a blind source separa-tion algorithm based on degree of cyclostationarity(DCS)crite-rion is constructed in this paper.Firstly,the DCS criterion is con-structed by using the cyclic spectrum theory.Then the algo-rithm flow of blind source separation is designed based on DCS criterion.At the same time,Givens matrix is constructed to make the blind source separation algorithm suitable for multiple sig-nals with different cyclostationary frequencies.The feasibility of this method is further proved.The theoretical and simulation results show that the algorithm can effectively separate and re-cognize common multi-radar signals.
基金Project(U1960205)supported by the National Natural Science Foundation of ChinaProject(2020ZXA01)supported by China Minmetals Science and Technology Special Plan Foundation。
文摘This study developed a direct reduction route to smelt refractory high-phosphorus iron ores by using hydrogen rich gas.The effects of temperature,gas composition,and gangue on the reduction behavior of iron ore pellets were investigated.Additionally,the migration behavior of phosphorus throughout the reduction-smelting process was examined.The apparent activation energy of the reduction process increased from 64.2 to 194.2 kJ/mol.Increasing the basicity from 0.5 to 0.9 increased the metallization rate from 85.9%to 89.2%.During the reduction process,phosphorus remained in the gangue phase.Carbon deposition and phosphorus removal behaviors of the pellets were investigated and correlated with the gas composition,temperature,pressure,metallization rate,and basicity.Increasing the FeO and CaO contents led to an increase in the liquidus temperature.A high metallization rate of the pellets reduced the phosphorus removal rate but increased the carbon content of the final iron product.Increasing basicity restricted the migration of phosphorus and improved the rate of phosphorus removal.The optimum dephosphorization parameters were separation temperature of 1823 K,basicity of 2.0,and metallization rate of 82.3%.This study presents a high-efficiency and low carbon method for smelting high-phosphorus iron ores.