A methodology, termed estimation error minimization(EEM) method, was proposed to determine the optimal number and locations of sensors so as to better estimate the vibration response of the entire structure. Utilizing...A methodology, termed estimation error minimization(EEM) method, was proposed to determine the optimal number and locations of sensors so as to better estimate the vibration response of the entire structure. Utilizing the limited sensor measurements, the entire structure response can be estimated based on the system equivalent reduction-expansion process(SEREP) method. In order to compare the capability of capturing the structural vibration response with other optimal sensor placement(OSP) methods, the effective independence(EI) method, modal kinetic energy(MKE) method and modal assurance criterion(MAC) method, were also investigated. A statistical criterion, root mean square error(RMSE), was employed to assess the magnitude of the estimation error between the real response and the estimated response. For investigating the effectiveness and accuracy of the above OSP methods, a 31-bar truss structure is introduced as a simulation example. The analysis results show that both the maximum and mean of the RMSE value obtained from the EEM method are smaller than those from other OSP methods, which indicates that the optimal sensor configuration obtained from the EEM method can provide a more accurate estimation of the entire structure response compared with the EI, MKE and MAC methods.展开更多
为以较小的成本获取全面的艉部振动信息,以某自航模型为研究对象,采用局部线性嵌入(Locally Linear Embedding,LLE)对其艉部振动测点进行优化设计,获取了不同工况下振动测点重要度排序,并通过与传统的频谱分析方法对比,验证了优化结果...为以较小的成本获取全面的艉部振动信息,以某自航模型为研究对象,采用局部线性嵌入(Locally Linear Embedding,LLE)对其艉部振动测点进行优化设计,获取了不同工况下振动测点重要度排序,并通过与传统的频谱分析方法对比,验证了优化结果的合理性。结果表明,轴承部位作为桨轴激励传递的主要通道,具有较高的优先级,可对船体测点按照测点重要程度排序,选取合适的测点,进而为后续试验提供基础。展开更多
基金Project(2011CB013804)supported by the National Basic Research Program of China
文摘A methodology, termed estimation error minimization(EEM) method, was proposed to determine the optimal number and locations of sensors so as to better estimate the vibration response of the entire structure. Utilizing the limited sensor measurements, the entire structure response can be estimated based on the system equivalent reduction-expansion process(SEREP) method. In order to compare the capability of capturing the structural vibration response with other optimal sensor placement(OSP) methods, the effective independence(EI) method, modal kinetic energy(MKE) method and modal assurance criterion(MAC) method, were also investigated. A statistical criterion, root mean square error(RMSE), was employed to assess the magnitude of the estimation error between the real response and the estimated response. For investigating the effectiveness and accuracy of the above OSP methods, a 31-bar truss structure is introduced as a simulation example. The analysis results show that both the maximum and mean of the RMSE value obtained from the EEM method are smaller than those from other OSP methods, which indicates that the optimal sensor configuration obtained from the EEM method can provide a more accurate estimation of the entire structure response compared with the EI, MKE and MAC methods.
文摘为以较小的成本获取全面的艉部振动信息,以某自航模型为研究对象,采用局部线性嵌入(Locally Linear Embedding,LLE)对其艉部振动测点进行优化设计,获取了不同工况下振动测点重要度排序,并通过与传统的频谱分析方法对比,验证了优化结果的合理性。结果表明,轴承部位作为桨轴激励传递的主要通道,具有较高的优先级,可对船体测点按照测点重要程度排序,选取合适的测点,进而为后续试验提供基础。