The conduction mechanism of stress induced leakage current (SILC) through 2nm gate oxide is studied over a gate voltage range between 1.7V and stress voltage under constant voltage stress (CVS). The simulation res...The conduction mechanism of stress induced leakage current (SILC) through 2nm gate oxide is studied over a gate voltage range between 1.7V and stress voltage under constant voltage stress (CVS). The simulation results show that the SILC is formed by trap-assisted tunnelling (TAT) process which is dominated by oxide traps induced by high field stresses. Their energy levels obtained by this work are approximately 1.9eV from the oxide conduction band, and the traps are believed to be the oxygen-related donor-like defects induced by high field stresses. The dependence of the trap density on stress time and oxide electric field is also investigated.展开更多
In the process of high-k films fabrication, a novel multi deposition multi annealing (MDMA) technique is introduced to replace simple post deposition annealing. The leakage current decreases with the increase of the...In the process of high-k films fabrication, a novel multi deposition multi annealing (MDMA) technique is introduced to replace simple post deposition annealing. The leakage current decreases with the increase of the post deposition annealing (PDA) times. The equivalent oxide thickness (EOT) decreases when the annealing time(s) change from 1 to 2. Furthermore, the characteristics of SILC (stress-induced leakage current) for an ultra-thin SiO2/HfO2 gate dielectric stack are studied systematically. The increase of the PDA time(s) from 1 to 2 can decrease the defect and defect generation rate in the HK layer. However, increasing the PDA times to 4 and 7 may introduce too much oxygen, therefore the type of oxygen vacancy changes.展开更多
Magnetic exchange interactions(MEIs) define networks of coupled magnetic moments and lead to a surprisingly rich variety of their magnetic properties. Typically MEIs can be estimated by fitting experimental results.Un...Magnetic exchange interactions(MEIs) define networks of coupled magnetic moments and lead to a surprisingly rich variety of their magnetic properties. Typically MEIs can be estimated by fitting experimental results.Unfortunately, how many MEIs need to be included in the fitting process for a material is unclear a priori,which limits the results obtained by these conventional methods. Based on linear spin-wave theory but without performing matrix diagonalization, we show that for a general quadratic spin Hamiltonian, there is a simple relation between the Fourier transform of MEIs and the sum of square of magnon energies(SSME). We further show that according to the real-space distance range within which MEIs are considered relevant, one can obtain the corresponding relationships between SSME in momentum space. By directly utilizing these characteristics and the experimental magnon energies at only a few high-symmetry k points in the Brillouin zone, one can obtain strong constraints about the range of exchange path beyond which MEIs can be safely neglected. Our methodology is also generally applicable for other Hamiltonian with quadratic Fermi or Boson operators.展开更多
有效辨识关键节点对增强网络韧性、提高运行能力具有重要意义,为提高航路网络关键节点识别的准确性,提出基于TOPSIS(technique for order preference by similarity to an ideal solution)-灰色关联分析法的综合评价方法和航路网络节点...有效辨识关键节点对增强网络韧性、提高运行能力具有重要意义,为提高航路网络关键节点识别的准确性,提出基于TOPSIS(technique for order preference by similarity to an ideal solution)-灰色关联分析法的综合评价方法和航路网络节点分级方法.首先,从复杂网络统计特性、交通流量特性、脆弱性3个方面构建航路网络关键节点评价指标体系;通过引入相对熵改进逼近理想值排序法,并结合灰色关联分析法综合评价航路点重要程度,采用基于K-means聚类方法有效划分航路节点等级;最后,以民航空管实际运行数据为实例,开展关键节点识别.研究表明:相较于单一指标,所建航路网络节点评价指标体系获得的评价结果更加全面;改进TOPSIS-灰色关联分析方法相较于传统TOPSIS法评价结果更加准确;所提识别方法发现了我国华东地区典型繁忙航路网络中有29个关键节点,其在网络结构及交通流量方面具有关键作用.展开更多
A novel trench MOS barrier Schottky diode(TMBS) device with a high-k material introduced into the gate insulator is reported, which is named high-k TMBS. By simulation with Medici, it is found that the high-k TMBS c...A novel trench MOS barrier Schottky diode(TMBS) device with a high-k material introduced into the gate insulator is reported, which is named high-k TMBS. By simulation with Medici, it is found that the high-k TMBS can have 19.8% lower leakage current while maintaining the same breakdown voltage and forward turn-on voltage compared with the conventional regular trench TMBS.展开更多
文摘The conduction mechanism of stress induced leakage current (SILC) through 2nm gate oxide is studied over a gate voltage range between 1.7V and stress voltage under constant voltage stress (CVS). The simulation results show that the SILC is formed by trap-assisted tunnelling (TAT) process which is dominated by oxide traps induced by high field stresses. Their energy levels obtained by this work are approximately 1.9eV from the oxide conduction band, and the traps are believed to be the oxygen-related donor-like defects induced by high field stresses. The dependence of the trap density on stress time and oxide electric field is also investigated.
基金supported by the National High Technology Research and Development Program of China(Grant No.2015AA016501)the National Natural Science Foundation of China(Grant No.61306129)
文摘In the process of high-k films fabrication, a novel multi deposition multi annealing (MDMA) technique is introduced to replace simple post deposition annealing. The leakage current decreases with the increase of the post deposition annealing (PDA) times. The equivalent oxide thickness (EOT) decreases when the annealing time(s) change from 1 to 2. Furthermore, the characteristics of SILC (stress-induced leakage current) for an ultra-thin SiO2/HfO2 gate dielectric stack are studied systematically. The increase of the PDA time(s) from 1 to 2 can decrease the defect and defect generation rate in the HK layer. However, increasing the PDA times to 4 and 7 may introduce too much oxygen, therefore the type of oxygen vacancy changes.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 11834006, 12004170, and 12104215)the Natural Science Foundation of Jiangsu Province,China (Grant No. BK20200326)+1 种基金the Excellent Programme in Nanjing Universitythe support from the Tencent Foundation through the XPLORER PRIZE。
文摘Magnetic exchange interactions(MEIs) define networks of coupled magnetic moments and lead to a surprisingly rich variety of their magnetic properties. Typically MEIs can be estimated by fitting experimental results.Unfortunately, how many MEIs need to be included in the fitting process for a material is unclear a priori,which limits the results obtained by these conventional methods. Based on linear spin-wave theory but without performing matrix diagonalization, we show that for a general quadratic spin Hamiltonian, there is a simple relation between the Fourier transform of MEIs and the sum of square of magnon energies(SSME). We further show that according to the real-space distance range within which MEIs are considered relevant, one can obtain the corresponding relationships between SSME in momentum space. By directly utilizing these characteristics and the experimental magnon energies at only a few high-symmetry k points in the Brillouin zone, one can obtain strong constraints about the range of exchange path beyond which MEIs can be safely neglected. Our methodology is also generally applicable for other Hamiltonian with quadratic Fermi or Boson operators.
文摘有效辨识关键节点对增强网络韧性、提高运行能力具有重要意义,为提高航路网络关键节点识别的准确性,提出基于TOPSIS(technique for order preference by similarity to an ideal solution)-灰色关联分析法的综合评价方法和航路网络节点分级方法.首先,从复杂网络统计特性、交通流量特性、脆弱性3个方面构建航路网络关键节点评价指标体系;通过引入相对熵改进逼近理想值排序法,并结合灰色关联分析法综合评价航路点重要程度,采用基于K-means聚类方法有效划分航路节点等级;最后,以民航空管实际运行数据为实例,开展关键节点识别.研究表明:相较于单一指标,所建航路网络节点评价指标体系获得的评价结果更加全面;改进TOPSIS-灰色关联分析方法相较于传统TOPSIS法评价结果更加准确;所提识别方法发现了我国华东地区典型繁忙航路网络中有29个关键节点,其在网络结构及交通流量方面具有关键作用.
基金Project supported by the National Basic Research Program of China(Grant No.2011CBA00607)the National Natural Science Foundation of China(Grant Nos.61106089 and 61376097)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LR14F040001)
文摘A novel trench MOS barrier Schottky diode(TMBS) device with a high-k material introduced into the gate insulator is reported, which is named high-k TMBS. By simulation with Medici, it is found that the high-k TMBS can have 19.8% lower leakage current while maintaining the same breakdown voltage and forward turn-on voltage compared with the conventional regular trench TMBS.