间隔重复学习方法在辅助学生自主学习方面发挥了重要的作用;然而传统的间隔重复算法在间隔控制上过于僵化,导致学生每日的学习任务量差异明显,进而影响学习效率。为了提升自主学习效率,提出了一种基于ACT-R(Adaptive Control of Thought...间隔重复学习方法在辅助学生自主学习方面发挥了重要的作用;然而传统的间隔重复算法在间隔控制上过于僵化,导致学生每日的学习任务量差异明显,进而影响学习效率。为了提升自主学习效率,提出了一种基于ACT-R(Adaptive Control of Thought-Rational)的认知间隔重复学习方法。首先,基于ACT-R规划学习过程,模拟学生学习行为并提取主导模型记忆变化的激活参数;其次,提出了遗忘曲线切割算法,将遗忘特性反映到学习规划之中,并提取记忆留存率与推荐复习间隔等参数;最后,基于二者所得学习参数,针对特定的学习任务动态地生成间隔重复学习规划。实验结果表明,相较于传统的间隔重复学习算法,基于ACT-R的认知间隔重复学习方法可以合理有效地安排自主学习任务,每日学习任务量更加均衡,每个任务的学习时间分布也更加合理。展开更多
文摘间隔重复学习方法在辅助学生自主学习方面发挥了重要的作用;然而传统的间隔重复算法在间隔控制上过于僵化,导致学生每日的学习任务量差异明显,进而影响学习效率。为了提升自主学习效率,提出了一种基于ACT-R(Adaptive Control of Thought-Rational)的认知间隔重复学习方法。首先,基于ACT-R规划学习过程,模拟学生学习行为并提取主导模型记忆变化的激活参数;其次,提出了遗忘曲线切割算法,将遗忘特性反映到学习规划之中,并提取记忆留存率与推荐复习间隔等参数;最后,基于二者所得学习参数,针对特定的学习任务动态地生成间隔重复学习规划。实验结果表明,相较于传统的间隔重复学习算法,基于ACT-R的认知间隔重复学习方法可以合理有效地安排自主学习任务,每日学习任务量更加均衡,每个任务的学习时间分布也更加合理。