In this paper, we establish several inequalities for some differantiable mappings that are connected with the Riemann-Liouville fractional integrals. The analysis used in the proofs is fairly elementary.
A generalized Rosenthal's inequality for Banach-space-valued martingales is proved, which extends the corresponding results in the previous literatures and characterizes the p-uniform smoothness and q-uniform convexi...A generalized Rosenthal's inequality for Banach-space-valued martingales is proved, which extends the corresponding results in the previous literatures and characterizes the p-uniform smoothness and q-uniform convexity of the underlying Banach space. As an application of this inequality, the strong law of large numbers for Banach-space-valued martingales is also given.展开更多
Bohr's type inequalities are studied in this paper: if f is a holomorphic mapping from the unit ball B^n to B^n, f(0)=p, then we have sum from k=0 to∞|Dφ_P(P)[D^kf(0)(z^k)]|/k!||Dφ_P(P)||<1 for|z|<max{1/2+|...Bohr's type inequalities are studied in this paper: if f is a holomorphic mapping from the unit ball B^n to B^n, f(0)=p, then we have sum from k=0 to∞|Dφ_P(P)[D^kf(0)(z^k)]|/k!||Dφ_P(P)||<1 for|z|<max{1/2+|P|,(1-|p|)/2^(1/2)andφ_P∈Aut(B^n) such thatφ_(p)=0. As corollaries of the above estimate, we obtain some sharp Bohr's type modulus inequalities. In particular, when n=1 and |P|→1, then our theorem reduces to a classical result of Bohr.展开更多
Reisner proved a reverse of the Blaschke-Santal5 inequality for zonoid bodies, Bourgain and Milman showed another reverse of the Blaschke-Santal5 inequality for centered convex bodies. In this paper, two reverses of t...Reisner proved a reverse of the Blaschke-Santal5 inequality for zonoid bodies, Bourgain and Milman showed another reverse of the Blaschke-Santal5 inequality for centered convex bodies. In this paper, two reverses of the Blaschke-Santal5 inequality for convex bodies are given by the Petty projection inequality and above two reverses. Further, using above methods, we also obtain two analogues of the Petty's conjecture for projection bodies, respectively.展开更多
This paper gives a new generalization of Hilbert's inequality with a best constant factor involving the β function. An applications, we consider the equivalent form and some particular results.
We introduce the martingale Morrey spaces built on Banach function spaces. We establish the Doob's inequality, the Burkholder-Gundy inequality and the boundedness of martingale transforms for our martingale Morrey sp...We introduce the martingale Morrey spaces built on Banach function spaces. We establish the Doob's inequality, the Burkholder-Gundy inequality and the boundedness of martingale transforms for our martingale Morrey spaces. We also introduce the martingale block spaces. By the Doob's inequality on martingale block spaces, we obtain the Davis' decompositions for martingale Morrey spaces.展开更多
A new improvement of Hilbert's inequality for double series can be establishedby means of a strengthened Cauchy's inequality. As application, a quite sharp result onFejer-Riesz's inequality is obtained.
We give an analytic quantitative relation between Hardy's non-locality and Bell operator. We find that Hardy's non-locality is a sufficient condition for the violation of Bell inequality, the upper bound of Hardy's...We give an analytic quantitative relation between Hardy's non-locality and Bell operator. We find that Hardy's non-locality is a sufficient condition for the violation of Bell inequality, the upper bound of Hardy's non-locality allowed by information causality just corresponds to Tsirelson bound of Bell inequality and the upper bound of Hardy's non- locality allowed by the principle of no-signaling just corresponds to the algebraic maximum of Bell operator. Then we study the CabeUo's argument of Hardy's non-locality (a generalization of Hardy's argument) and find a similar relation between it and violation of Bell inequality. Finally, we give a simple derivation of the bound of Hardy's non-locality under the constraint of information causality with the aid of the above derived relation between Hardy's non-locality and Bell operator.展开更多
In this paper we shall extend Hardy's inequality associated with Fourier trans- form to the strip n(2-p) ≤σ〈 n+p(N+ 1) where N = [n(1/p- 1)], the greatest integer not exceeding n(1/p - 1).
Let(M,g_(0))be a compact Riemannian manifold-with-boundary.We present a new proof of the classical Gaffney inequality for differential forms in boundary value spaces over M,via a variational approach a la Kozono-Yanag...Let(M,g_(0))be a compact Riemannian manifold-with-boundary.We present a new proof of the classical Gaffney inequality for differential forms in boundary value spaces over M,via a variational approach a la Kozono-Yanagisawa[Lr-variational inequality for vector fields and the Helmholtz-Weyl decomposition in bounded domains,Indiana Univ.Math.J.58(2009),1853-1920],combined with global computations based on the Bochner technique.展开更多
This paper presents the popularization of the weighting of Chebyshev's inequality and discusses the relation between this popularization and some famous inequalities.
本文给出了Bihari不等式成在高维空间的一种推广形式。即证明了定理:设Ω_r表R^n中的球;S^2=sum from i=1 to n (S_i^2≤r^2),Q为R^n中有界可测集,u(s,x),f(s,x)为Ω_R×Q(R>r)下的非责有界连续函数,c≥0为常数,若 u(t,y≤c+∫f(...本文给出了Bihari不等式成在高维空间的一种推广形式。即证明了定理:设Ω_r表R^n中的球;S^2=sum from i=1 to n (S_i^2≤r^2),Q为R^n中有界可测集,u(s,x),f(s,x)为Ω_R×Q(R>r)下的非责有界连续函数,c≥0为常数,若 u(t,y≤c+∫f(s,x)φ[u(s,x)dxds] (1)对(t,y)∈Ω_r×Q(r<R)成立,其中φ(u)当0<u<ü(ü≤∞)为正的连续非减函数,又设ψ(u)=integral from n=0 to u du_1/(φu_1)(c<u<ü)这时如果 ∫Ω_r×Q~[f(s,x)dxds]<ψ(ü-0) (2)则有 supu(t,y)≤ψ^(-1)[f(s,x)dxds] (t,y)∈Ω_r×Q展开更多
Let P be an inner point of a convex N-gon ΓN : A1A2… ANA1(N ≥ 3), and let di,k denote the distance from the point Ai+k to the line PAi(i = 1,2,…,N, Ai = Aj〈=〉 i ≡ j(modN)), which is called the k-Brocard...Let P be an inner point of a convex N-gon ΓN : A1A2… ANA1(N ≥ 3), and let di,k denote the distance from the point Ai+k to the line PAi(i = 1,2,…,N, Ai = Aj〈=〉 i ≡ j(modN)), which is called the k-Brocard distance for P of ΓN. We have proved the following double-inequality: If P ∈ ΓN, k = N↑∩i=1∠Ai-kAiAi+k(1 ≤ k 〈 N/2,i =1,2,…,N), and r ≤ lnN-ln(N-1)/ln2+2[lnN-ln(N-1)], then (1/N N↑∑↑i=1di^r, k)^1/r≤1/N coskπ/N N↑∑↑i=1|AiAi+k|≤sin2kπ/2sinπ/N(1/N N↑∑↑i=1|AiAi+1|^2.展开更多
We study the single projection algorithm of Tseng for solving a variational inequality problem in a 2-uniformly convex Banach space.The underline cost function of the variational inequality is assumed to be monotone a...We study the single projection algorithm of Tseng for solving a variational inequality problem in a 2-uniformly convex Banach space.The underline cost function of the variational inequality is assumed to be monotone and Lipschitz continuous.A weak convergence result is obtained under reasonable assumptions on the variable step-sizes.We also give the strong convergence result for when the underline cost function is strongly monotone and Lipchitz continuous.For this strong convergence case,the proposed method does not require prior knowledge of the modulus of strong monotonicity and the Lipschitz constant of the cost function as input parameters,rather,the variable step-sizes are diminishing and non-summable.The asymptotic estimate of the convergence rate for the strong convergence case is also given.For completeness,we give another strong convergence result using the idea of Halpern iteration when the cost function is monotone and Lipschitz continuous and the variable step-sizes are bounded by the inverse of the Lipschitz constant of the cost function.Finally,we give an example of a contact problem where our proposed method can be applied.展开更多
We prove some Trudinger-type inequalities and Brezis-Gallouet-Wainger inequality on the Heisenberg group, extending to this context the Euclidean results by T. Ozawa.
文摘In this paper, we establish several inequalities for some differantiable mappings that are connected with the Riemann-Liouville fractional integrals. The analysis used in the proofs is fairly elementary.
基金Supported by the Scientific Research Foundation of Hubei Province (D200613001)the National Natural Science Foundation of China (10371093)
文摘A generalized Rosenthal's inequality for Banach-space-valued martingales is proved, which extends the corresponding results in the previous literatures and characterizes the p-uniform smoothness and q-uniform convexity of the underlying Banach space. As an application of this inequality, the strong law of large numbers for Banach-space-valued martingales is also given.
基金Supported by the NNSF of China(10571164)Supported by Specialized Research Fund for the Doctoral Program of Higher Education(SRFDP)(2050358052)Supported by the NSF of Zhejiang Province(Y606197)
文摘Bohr's type inequalities are studied in this paper: if f is a holomorphic mapping from the unit ball B^n to B^n, f(0)=p, then we have sum from k=0 to∞|Dφ_P(P)[D^kf(0)(z^k)]|/k!||Dφ_P(P)||<1 for|z|<max{1/2+|P|,(1-|p|)/2^(1/2)andφ_P∈Aut(B^n) such thatφ_(p)=0. As corollaries of the above estimate, we obtain some sharp Bohr's type modulus inequalities. In particular, when n=1 and |P|→1, then our theorem reduces to a classical result of Bohr.
基金Foundation item: Supported by the National Natural Science Foundation of China(10671117) Supported by the Innovation Foundation of Graduate Student of China Three Gorges University(2012CX077)
文摘Reisner proved a reverse of the Blaschke-Santal5 inequality for zonoid bodies, Bourgain and Milman showed another reverse of the Blaschke-Santal5 inequality for centered convex bodies. In this paper, two reverses of the Blaschke-Santal5 inequality for convex bodies are given by the Petty projection inequality and above two reverses. Further, using above methods, we also obtain two analogues of the Petty's conjecture for projection bodies, respectively.
基金Supported by the NSF of Guangdong Institutions of Higher Learning, College and University(0177).
文摘This paper gives a new generalization of Hilbert's inequality with a best constant factor involving the β function. An applications, we consider the equivalent form and some particular results.
文摘We introduce the martingale Morrey spaces built on Banach function spaces. We establish the Doob's inequality, the Burkholder-Gundy inequality and the boundedness of martingale transforms for our martingale Morrey spaces. We also introduce the martingale block spaces. By the Doob's inequality on martingale block spaces, we obtain the Davis' decompositions for martingale Morrey spaces.
文摘A new improvement of Hilbert's inequality for double series can be establishedby means of a strengthened Cauchy's inequality. As application, a quite sharp result onFejer-Riesz's inequality is obtained.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10947142 and 11005031)
文摘We give an analytic quantitative relation between Hardy's non-locality and Bell operator. We find that Hardy's non-locality is a sufficient condition for the violation of Bell inequality, the upper bound of Hardy's non-locality allowed by information causality just corresponds to Tsirelson bound of Bell inequality and the upper bound of Hardy's non- locality allowed by the principle of no-signaling just corresponds to the algebraic maximum of Bell operator. Then we study the CabeUo's argument of Hardy's non-locality (a generalization of Hardy's argument) and find a similar relation between it and violation of Bell inequality. Finally, we give a simple derivation of the bound of Hardy's non-locality under the constraint of information causality with the aid of the above derived relation between Hardy's non-locality and Bell operator.
文摘In this paper we shall extend Hardy's inequality associated with Fourier trans- form to the strip n(2-p) ≤σ〈 n+p(N+ 1) where N = [n(1/p- 1)], the greatest integer not exceeding n(1/p - 1).
文摘Let(M,g_(0))be a compact Riemannian manifold-with-boundary.We present a new proof of the classical Gaffney inequality for differential forms in boundary value spaces over M,via a variational approach a la Kozono-Yanagisawa[Lr-variational inequality for vector fields and the Helmholtz-Weyl decomposition in bounded domains,Indiana Univ.Math.J.58(2009),1853-1920],combined with global computations based on the Bochner technique.
文摘This paper presents the popularization of the weighting of Chebyshev's inequality and discusses the relation between this popularization and some famous inequalities.
文摘本文给出了Bihari不等式成在高维空间的一种推广形式。即证明了定理:设Ω_r表R^n中的球;S^2=sum from i=1 to n (S_i^2≤r^2),Q为R^n中有界可测集,u(s,x),f(s,x)为Ω_R×Q(R>r)下的非责有界连续函数,c≥0为常数,若 u(t,y≤c+∫f(s,x)φ[u(s,x)dxds] (1)对(t,y)∈Ω_r×Q(r<R)成立,其中φ(u)当0<u<ü(ü≤∞)为正的连续非减函数,又设ψ(u)=integral from n=0 to u du_1/(φu_1)(c<u<ü)这时如果 ∫Ω_r×Q~[f(s,x)dxds]<ψ(ü-0) (2)则有 supu(t,y)≤ψ^(-1)[f(s,x)dxds] (t,y)∈Ω_r×Q
文摘Let P be an inner point of a convex N-gon ΓN : A1A2… ANA1(N ≥ 3), and let di,k denote the distance from the point Ai+k to the line PAi(i = 1,2,…,N, Ai = Aj〈=〉 i ≡ j(modN)), which is called the k-Brocard distance for P of ΓN. We have proved the following double-inequality: If P ∈ ΓN, k = N↑∩i=1∠Ai-kAiAi+k(1 ≤ k 〈 N/2,i =1,2,…,N), and r ≤ lnN-ln(N-1)/ln2+2[lnN-ln(N-1)], then (1/N N↑∑↑i=1di^r, k)^1/r≤1/N coskπ/N N↑∑↑i=1|AiAi+k|≤sin2kπ/2sinπ/N(1/N N↑∑↑i=1|AiAi+1|^2.
文摘We study the single projection algorithm of Tseng for solving a variational inequality problem in a 2-uniformly convex Banach space.The underline cost function of the variational inequality is assumed to be monotone and Lipschitz continuous.A weak convergence result is obtained under reasonable assumptions on the variable step-sizes.We also give the strong convergence result for when the underline cost function is strongly monotone and Lipchitz continuous.For this strong convergence case,the proposed method does not require prior knowledge of the modulus of strong monotonicity and the Lipschitz constant of the cost function as input parameters,rather,the variable step-sizes are diminishing and non-summable.The asymptotic estimate of the convergence rate for the strong convergence case is also given.For completeness,we give another strong convergence result using the idea of Halpern iteration when the cost function is monotone and Lipschitz continuous and the variable step-sizes are bounded by the inverse of the Lipschitz constant of the cost function.Finally,we give an example of a contact problem where our proposed method can be applied.
基金supported by the Fundamental Research Funds for the Central Universities (1082001)National Science Foundation of China (11101096)
文摘We prove some Trudinger-type inequalities and Brezis-Gallouet-Wainger inequality on the Heisenberg group, extending to this context the Euclidean results by T. Ozawa.